login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114215
Number of derangements of [n] avoiding the patterns 123, 132 and 213.
1
0, 1, 2, 4, 4, 9, 12, 25, 30, 64, 80, 169, 208, 441, 546, 1156, 1428, 3025, 3740, 7921, 9790, 20736, 25632, 54289, 67104, 142129, 175682, 372100, 459940, 974169, 1204140, 2550409, 3152478, 6677056, 8253296, 17480761, 21607408, 45765225
OFFSET
1,3
LINKS
T. Mansour and A. Robertson, Refined restricted permutations avoiding subsets of patterns of length three, Annals of Combinatorics, 6, 2002, 407-418; Theorem 3.2.
FORMULA
a(n) = F(n)-F((n-2)/2)^2 if n is even; a(n)=F(n)-F((n-1)/2)^2 if n is odd; here F(n) is the Fibonacci sequence with F(0)=F(1)=1.
a(n) = 2*a(n-2)+2*a(n-4)-a(n-6). G.f.: -x^2*(x+1)*(x^3-x^2-x-1) / ((x^2-x-1)*(x^2+1)*(x^2+x-1)). - Colin Barker, Mar 29 2014
EXAMPLE
a(2)=1 because we have 21; a(3)=2 because we have 231 and 312; a(4)=4 because we have 3412,3421,4312 and 4321.
MAPLE
with(combinat): F:=n->fibonacci(n+1): a:=proc(n) if n mod 2 = 0 then F(n)-F((n-2)/2)^2 else F(n)-F((n-1)/2)^2 fi end: seq(a(n), n=1..45);
MATHEMATICA
CoefficientList[Series[- x (x + 1) (x^3 - x^2 - x - 1)/((x^2 - x - 1) (x^2 + 1) (x^2 + x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 29 2014 *)
CROSSREFS
Cf. A007598 (bisection), A079472 (bisection).
Sequence in context: A335057 A039887 A216162 * A292302 A151712 A253827
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 17 2005
STATUS
approved