login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079472 Number of perfect matchings on an n X n L-shaped graph. 14
0, 2, 4, 12, 30, 80, 208, 546, 1428, 3740, 9790, 25632, 67104, 175682, 459940, 1204140, 3152478, 8253296, 21607408, 56568930, 148099380, 387729212, 1015088254, 2657535552, 6957518400, 18215019650, 47687540548, 124847601996, 326855265438, 855718194320 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n+1) = 2*F(n)*F(n+1) appears as the second component of the square of [F(n), F(n+1), F(n+2), F(n+3)], for n >= 0, with F(n) = A000045(n), in the Clifford algebra Cl_2 over Euclidean 2-space. The whole quartet of sequences for this square is [-A248161(n), a(n+1), A059929(n), A121801(n+1)]. See the Oct 15 2014 comment in A147973 where also a reference is given. - Wolfdieter Lang, Nov 01 2014
REFERENCES
Daniele Corradetti, La Metafisica del Numero, 2008
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. pp. 178, 255.
LINKS
P. F. F. Espinosa, J. F. González, J. P. Herrán, A. M. Cañadas, and J. L. Ramírez, On some relationships between snake graphs and Brauer configuration algebras, Algebra Disc. Math. (2022) Vol. 33, No. 2, 29-59.
I. Gutman and S. J. Cyvin, A result on 1-factors related to Fibonacci numbers, The Fibonacci Quarterly, 28 (1990), pp. 81-84.
FORMULA
a(n) = 2*F(n)*F(n-1) where F(n) are the Fibonacci numbers (A000045).
From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jan 18 2003: (Start)
a(n) = 2*A001654(n) = F(2*n) - F(n)^2 = A001906(n) - A007598(n).
a(n) = (F(n+1)^2 - F(n-2)^2)/2 = (A007598(n+1) - A007598(n-2))/2.
a(n) = 2*(L(2*n-1) + (-1)^n)/5 = (2/5)*(A002878(n-1) + A033999(n)), where L(n) = A000032(n).
a(n+1) = a(n) + 2*F(n)^2.
G.f.: 2*x^2/((1+x)*(1-3*x+x^2)). (End)
a(n) = Im( (F(n) + i*F(n+1))^2 ) (cf. A121646). - Daniele Corradetti (d.corradetti(AT)gmail.com), May 02 2008
From Michael Somos, Jun 28 2014: (Start)
a(n) = F(n+1)^2 - F(n)^2 - F(n-1)^2.
a(1 - n) = -a(n). (End)
a(n) = ( 2*(-1)^n - (1+sqrt(5))*((3-sqrt(5))/2)^n - (1-sqrt(5))*((3+sqrt(5))/2)^n )/5. - Colin Barker, Sep 27 2016
From Rigoberto Florez, May 06 2020: (Start)
a(n) = F(2n-2) + F(n-1)^2, where F(n) is the n-th Fibonacci number.
a(n) = M^(n+1)[2,1], for n>0 where M=[0,0,1;0,1,2;1,1,1]. (End)
a(n) = F(n)^2 + F(n-1)^2 - F(n-2)^2. - Michael Somos, Mar 02 2023
EXAMPLE
a(7) = 2*13*8 = 208 = number of matchings. F(7) = 13 F(6) = 8
a(3) = 4 because in the graph with vertex set {(0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2)} and edge set {h(0,0), h(1,0), h(0,1), h(1,1), h(0,2), v(0,0), v(0,1), v(1,0), v(1,1), v(2,0)}, where h(i,j) (v(i,j)) is a horizontal (vertical) edge of unit length starting from vertex (i,j), we have the following four perfect matchings: {h(0,0), h(0,1), h(0,2), v(2,0)}, {h(0,0), v(0,1), v(1,1), v(2,0)}, {v(0,0), v(1,0), v(2,0), h(0,2)} and {v(0,0), h(1,0), h(1,1), h(0,2)}. - Emeric Deutsch, Dec 30 2004
G.f. = 2*x^2 + 4*x^3 + 12*x^4 + 30*x^5 + 80*x^6 + 208*x^7 + 546*x^8 + ...
MAPLE
with(combinat, fibonacci):seq(2*fibonacci(n)*fibonacci(n-1), n=1..30);
MATHEMATICA
LinearRecurrence[{2, 2, -1}, {0, 2, 4}, 30] (* Arkadiusz Wesolowski, Sep 15 2012 *)
Table[(2*Fibonacci[n]*Fibonacci[n-1]), {n, 30}] (* Vincenzo Librandi, Jun 29 2014 *)
PROG
(PARI) {a(n) = 2 * fibonacci(n) * fibonacci(n-1)}; \\ Michael Somos, Jun 28 2014
(PARI) concat(0, Vec(2*x^2/((x+1)*(x^2-3*x+1)) + O(x^40))) \\ Colin Barker, Sep 27 2016
(Magma) [2*Fibonacci(n)*Fibonacci(n-1): n in [1..30]]; // Vincenzo Librandi, Jun 29 2014
(Sage) [2*fibonacci(n-1)*fibonacci(n) for n in (1..30)] # G. C. Greubel, Jan 07 2019
(GAP) List([1..30], n -> 2*Fibonacci(n-1)*Fibonacci(n)); # G. C. Greubel, Jan 07 2019
CROSSREFS
Sequence in context: A083554 A355384 A059412 * A308556 A148186 A006948
KEYWORD
easy,nonn
AUTHOR
Helen King (h.king(AT)uea.ac.uk), Jan 15 2003
EXTENSIONS
More terms from Benoit Cloitre and Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jan 18 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 21:20 EDT 2023. Contains 363138 sequences. (Running on oeis4.)