login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A079470
Primes with prime inventory number (as in A063850).
0
3, 7, 17, 23, 113, 127, 131, 137, 193, 199, 223, 233, 271, 311, 313, 331, 359, 367, 431, 433, 439, 463, 479, 499, 503, 523, 587, 607, 641, 677, 691, 733, 773, 797, 809, 821, 823, 829, 853, 997, 1009, 1069, 1123, 1129, 1187, 1213, 1217, 1223, 1231, 1277, 1291
OFFSET
1,1
EXAMPLE
The prime 127 has inventory number 111217 (one "1", one "2", one "7"), which is also prime. Hence 127 belongs to the sequence.
MATHEMATICA
g[n_] := Module[{seen, r, d, l, i, t}, seen = {}; r = {}; d = IntegerDigits[n]; l = Length[d]; For[i = 1, i <= l, i++, t = d[[i]]; If[ ! MemberQ[seen, t], r = Join[r, IntegerDigits[Count[d, t]]]; r = Join[r, {t}]; seen = Append[seen, t]]]; FromDigits[r]]; s = {}; For[j = 1, j <= 10^3, j++, temp = Prime[j]; If[PrimeQ[g[temp]], s = Append[s, temp]]]; s
CROSSREFS
Cf. A063850.
Sequence in context: A127175 A339943 A127355 * A056815 A127176 A100343
KEYWORD
base,easy,nonn
AUTHOR
Joseph L. Pe, Jan 15 2003
STATUS
approved