login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A127355
Primes with prime digit counts. The digit count numerically summarizes the frequency of digits 0 through 9 in that order when they occur in a number.
4
3, 7, 17, 23, 71, 101, 103, 107, 109, 113, 127, 131, 137, 173, 199, 223, 233, 271, 311, 313, 317, 331, 359, 367, 409, 479, 499, 593, 673, 677, 701, 709, 773, 797, 907, 919, 929, 947, 953, 977, 991, 1009, 1123, 1129, 1193, 1213, 1217, 1223, 1231, 1277, 1291
OFFSET
1,1
COMMENTS
Compare with "Look And Say" version A056815.
LINKS
FORMULA
A010051(a(n)) * A010051(A047842(a(n))) = 1. - Reinhard Zumkeller, Apr 14 2014
EXAMPLE
The primes 479,991,1747 respectively have digit counts 141719 (one 4,one 7,one 9), 1129 (one 1, two 9's), 111427 (one 1, one 4, two 7's) which are also prime; So they belong to the sequence.
MATHEMATICA
dc[n_] :=FromDigits@Flatten@Select[Table[{DigitCount[n, 10, k], k}, {k, 0, 9}], #[[1]] > 0 &]; Select[Prime@Range[210], PrimeQ[dc[ # ]] &] (* Ray Chandler, Jan 16 2007 *)
PROG
(Haskell)
a127355 n = a127355_list !! (n-1)
a127355_list = filter ((== 1) . a010051' . a047842) a000040_list
-- Reinhard Zumkeller, Apr 14 2014
CROSSREFS
Sequence in context: A118940 A127175 A339943 * A079470 A056815 A127176
KEYWORD
nonn,base
AUTHOR
Lekraj Beedassy, Jan 11 2007
EXTENSIONS
Corrected by Ray Chandler, Jan 16 2007
STATUS
approved