The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253811 Part of the y solutions of the Pell equation x^2 - 2*y^2 = +7. 12
 3, 19, 111, 647, 3771, 21979, 128103, 746639, 4351731, 25363747, 147830751, 861620759, 5021893803, 29269742059, 170596558551, 994309609247, 5795261096931, 33777256972339, 196868280737103, 1147432427450279, 6687726283964571, 38978925276337147 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS All positive solutions y = a(n) of the (generalized) Pell equation x^2 - 2*y^2 = +7 based on the fundamental solution (x2,y2) = (5,3) of the second class of (proper) solutions. The corresponding x solutions are given by x(n) = A101386(n). All other positive solutions come from the first class of (proper) solutions based on the fundamental solution (x1,y1) = (3,1). These are given in A038762 and A038761. All solutions of this Pell equation are found in A077443(n+1) and A077442(n), for n >= 0. See the Nagell reference on how to find all solutions. REFERENCES T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6,-1). FORMULA a(n) = irrational part of z(n), where z(n) = (5+3*sqrt(2))*(3+2*sqrt(2))^n), n >= 0, the general positive solutions of the second class of proper solutions. From Colin Barker, Feb 05 2015: (Start) a(n) = 6*a(n-1) - a(n-2). G.f.: (x+3) / (x^2-6*x+1). (End) a(n) = 3*A001109(n+1) + A001109(n). - R. J. Mathar, Feb 05 2015 EXAMPLE A101386(2)^2 - 2*a(2) = 157^2 - 2*111^2 = +7. MATHEMATICA LinearRecurrence[{6, -1}, {3, 19}, 30] (* or *) CoefficientList[Series[ (x+3)/(x^2-6*x+1), {z, 0, 50}], x]  (* G. C. Greubel, Jul 26 2018 *) PROG (PARI) Vec((x+3)/(x^2-6*x+1) + O(x^100)) \\ Colin Barker, Feb 05 2015 (MAGMA) m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x+3)/(x^2-6*x+1))); // G. C. Greubel, Jul 26 2018 CROSSREFS Cf. A101386, A038762, A038761, A077443, A077442. Sequence in context: A103005 A162354 A132959 * A037154 A037774 A037662 Adjacent sequences:  A253808 A253809 A253810 * A253812 A253813 A253814 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Feb 05 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 14:07 EDT 2021. Contains 345025 sequences. (Running on oeis4.)