login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115327
E.g.f.: exp(x + 3/2*x^2).
7
1, 1, 4, 10, 46, 166, 856, 3844, 21820, 114076, 703216, 4125496, 27331624, 175849480, 1241782816, 8627460976, 64507687696, 478625814544, 3768517887040, 29614311872416, 244419831433696, 2021278543778656, 17419727924101504
OFFSET
0,3
COMMENTS
Term-by-term square of sequence with e.g.f.: exp(x+m/2*x^2) is given by e.g.f.: exp(x/(1-m*x))/sqrt(1-m^2*x^2) for all m.
a(n) is also the number of square roots of any permutation in S_{3n} whose disjoint cycle decomposition consists of n cycles of length 3. - Luis Manuel Rivera Martínez, Feb 26 2015
LINKS
John Campbell, A class of symmetric difference-closed sets related to commuting involutions, Discrete Mathematics & Theoretical Computer Science, Vol 19 no. 1, 2017.
Jesús Leaños, Rutilo Moreno, and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, arXiv:1005.1531 [math.CO], 2010-2011.
Jesús Leaños, Rutilo Moreno, and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, Australas. J. Combin. 52 (2012), 41-54, (Theorems 1 and 2).
FORMULA
Term-by-term square equals A115328 which has e.g.f.: exp(x/(1-3*x))/sqrt(1-9*x^2).
From Paul Barry, Apr 10 2009: (Start)
G.f.: 1/(1-x-3*x^2/(1-x-6*x^2/(1-x-9*x^2/(1-x-12*x^2/(1-... (continued fraction);
a(n) = a(n-1)+3*(n-1)*a(n-2). (End)
a(n) ~ exp(sqrt(n/3)-n/2-1/12)*3^(n/2)*n^(n/2)/sqrt(2). - Vaclav Kotesovec, Oct 19 2012
G.f.: 1/Q(0), where Q(k)= 1 + 3*x*k - x/(1 - 3*x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 17 2013
a(n) = n!*Sum_{k=0..floor(n/2)}3^k/(2^k*k!*(n-2*k)!). - Luis Manuel Rivera Martínez, Feb 26 2015
MATHEMATICA
Range[0, 20]! CoefficientList[Series[Exp[(x + 3 / 2 x^2)], {x, 0, 20}], x] (* Vincenzo Librandi, May 22 2013 *)
PROG
(PARI) a(n)=local(m=3); n!*polcoeff(exp(x+m/2*x^2+x*O(x^n)), n)
CROSSREFS
Column k=3 of A359762.
Cf. A115328.
Sequence in context: A149228 A149229 A149230 * A233395 A197664 A099606
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 20 2006
STATUS
approved