login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115329
Expansion of e.g.f.: exp(x + 2*x^2).
14
1, 1, 5, 13, 73, 281, 1741, 8485, 57233, 328753, 2389141, 15539261, 120661465, 866545993, 7140942173, 55667517781, 484124048161, 4046845186145, 36967280461093, 328340133863533, 3137853448906601, 29405064157989241
OFFSET
0,3
COMMENTS
Term-by-term square of sequence with e.g.f.: exp(x+m/2*x^2) is given by e.g.f.: exp(x/(1-m*x))/sqrt(1-m^2*x^2) for all m.
Combinatorial interpretation: a(n) counts the partitions of a set of n distinguishable objects into subsets of size 1 and 2 with the additional feature that the constituents of the subset of size 2 acquire 2 colors. - Karol A. Penson and P. Blasiak (blasiak(AT)lptl.jussieu.fr), Jun 03 2006
In general, e.g.f. exp(x+m*x^2) has general term sum{k=0..n, C(n,k)*m^k*(n-k)!/(n-m*k)!}. [Paul Barry, Nov 07 2008]
The sequence terms have the form 4*m + 1 (follows from the recurrence). a(n+k) = a(n) (mod k) holds for all n and k by an induction argument making use of the recurrence equation. For each k the sequence a(n) taken modulo k is thus periodic with exact period dividing k. - Peter Bala, Nov 15 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..665 (terms 0..200 from Vincenzo Librandi)
Magdalena Boos, Giovanni Cerulli Irelli, Francesco Esposito, Parabolic orbits of 2-nilpotent elements for classical groups, arXiv:1802.06425 [math.RT], 2018.
FORMULA
Term-by-term square equals A115330 which has e.g.f.: exp(x/(1-4*x))/sqrt(1-16*x^2).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)2^k*n!/(n-k)! = Sum_{k=0..n} C(n,k)2^k*(n-k)!/(n-2k)!. - Paul Barry, Nov 07 2008
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator sqrt(1+8*x)*d/dx. Cf. A000085 and A047974. - Peter Bala, Dec 07 2011
a(n) = a(n-1) + 4*(n-1)*a(n-2). - R. J. Mathar, Dec 10 2011
a(n) ~ 2^(n-1/2)*exp(sqrt(n)/2-n/2-1/16)*n^(n/2). - Vaclav Kotesovec, Oct 19 2012
G.f.: 1/Q(0), where Q(k)= 1 + 4*x*k - x/(1 - 4*x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 17 2013
G.f.: 1/G(0), where G(k)= 1 - x - 4*(k+1)*x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 21 2013
a(n) = i^(1 - n)*2^(3*(n - 1)/2)*KummerU((1 - n)/2, 3/2, -1/8). - Peter Luschny, Nov 21 2017
a(n) = (-i*sqrt(2))^n * Hermite(n, i/(2*sqrt(2))). - G. C. Greubel, Jul 12 2024
MAPLE
a := n -> I^(1 - n)*2^((3*(n - 1))/2)*KummerU((1 - n)/2, 3/2, -1/8):
seq(simplify(a(n)), n=0..21); # Peter Luschny, Nov 21 2017
MATHEMATICA
Range[0, 20]! CoefficientList[Series[Exp[(x + 2 x^2)], {x, 0, 20}], x] (* Vincenzo Librandi, May 22 2013 *)
PROG
(PARI) a(n)=local(m=4); n!*polcoeff(exp(x+m/2*x^2+x*O(x^n)), n)
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x+2*x^2) ))); // G. C. Greubel, Jul 12 2024
(SageMath)
[(-i*sqrt(2))^n*hermite(n, i/(2*sqrt(2))) for n in range(31)] # G. C. Greubel, Jul 12 2024
CROSSREFS
Column k=4 of A359762.
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), this sequence (q=2), A293720 (q=4).
Sequence in context: A075063 A100209 A139361 * A272645 A137702 A140120
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Jan 20 2006
EXTENSIONS
More terms from Karol A. Penson and P. Blasiak (blasiak(AT)lptl.jussieu.fr), Jun 03 2006
STATUS
approved