login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158968
Numerator of Hermite(n, 1/6).
9
1, 1, -17, -53, 865, 4681, -73169, -578717, 8640577, 91975825, -1307797649, -17863446149, 241080488353, 4099584856537, -52313249418065, -1085408633265389, 13039168709612161, 325636855090044193, -3664348770051277073, -109170689819225595605, 1144036589538311163361
OFFSET
0,3
LINKS
DLMF, Digital library of mathematical functions, Table 18.9.1 for H_n(x).
FORMULA
From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 3^n * Hermite(n, 1/6).
E.g.f.: exp(x - 9*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/3)^(n-2*k)/(k!*(n-2*k)!)). (End)
D-finite with recurrence a(n) -a(n-1) +18*(n-1)*a(n-2)=0. - [DLMF] Georg Fischer, Feb 06 2021
MATHEMATICA
Numerator[Table[HermiteH[n, 1/6], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
Table[3^n*HermiteH[n, 1/6], {n, 0, 50}] (* G. C. Greubel, Jul 10 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 1/6)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/3)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 10 2018
(SageMath) [3^n*hermite(n, 1/6) for n in range(31)] # G. C. Greubel, Jul 12 2024
CROSSREFS
Sequences with e.g.f = exp(x + q*x^2): this sequence (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4).
Sequence in context: A146397 A146405 A228244 * A072895 A300059 A097059
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved