login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158960
Numerator of Hermite(n, 1/5).
10
1, 2, -46, -292, 6316, 71032, -1436936, -24183472, 454560656, 10582510112, -183387274976, -5658029605952, 89546942024896, 3573911647620992, -51057689020940416, -2603853531376575232, 33085559702952161536, 2149253944507164508672
OFFSET
0,2
COMMENTS
The denominators are 5^n = A000351(n) (conjectured). - M. F. Hasler, Feb 16 2014
LINKS
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
FORMULA
D-finite with recurrence a(n) -2*a(n-1) +50*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
a(n) = (-1)^floor(n/2)*2^ceiling(n/2)*A237987(n). - M. F. Hasler, Feb 16 2014
From G. C. Greubel, Jun 09 2018: (Start)
a(n) = 5^n * Hermite(n,1/5).
E.g.f.: exp(2*x-25*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/5)^(n-2k)/(k!*(n-2k)!). (End)
EXAMPLE
Numerators of 1, 2/5, -46/25, -292/125, 6316/625, 71032/3125, -1436936/15625,..
MAPLE
A158960 := proc(n)
orthopoly[H](n, 1/5) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
MATHEMATICA
Numerator[Table[HermiteH[n, 1/5], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011*)
PROG
(PARI) A158960 = n->numerator(polhermite(n, 1/5)) \\ M. F. Hasler, Feb 16 2014
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 02 2018
CROSSREFS
Sequence in context: A266016 A071777 A179108 * A281327 A302377 A303098
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved