login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293720
Expansion of e.g.f.: exp(x + 4*x^2).
10
1, 1, 9, 25, 241, 1041, 10681, 60649, 658785, 4540321, 51972841, 415198521, 4988808529, 44847866545, 563683953561, 5586645006601, 73228719433921, 788319280278849, 10747425123292105, 124265401483446361, 1757874020223846321, 21640338257575264081
OFFSET
0,3
LINKS
FORMULA
a(n) ~ 2^((3*n-1)/2) * exp(-1/32 + sqrt(2*n)/4 - n/2) * n^(n/2). - Vaclav Kotesovec, Oct 15 2017
a(n) = (-2*i)^n * Hermite(n, i/4). - G. C. Greubel, Jul 12 2024
MATHEMATICA
CoefficientList[Series[E^(x + 4*x^2), {x, 0, 30}], x] * Range[0, 30]! (* Vaclav Kotesovec, Oct 15 2017 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(x+4*x^2)))
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x+4*x^2) ))); // G. C. Greubel, Jul 12 2024
(SageMath)
[(-2*i)^n*hermite(n, i/4) for n in range(31)] # G. C. Greubel, Jul 12 2024
CROSSREFS
Column k=2 of A293724.
Column k=8 of A359762.
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), this sequence (q=4).
Sequence in context: A053929 A014760 A013397 * A227891 A193065 A278911
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 15 2017
STATUS
approved