Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jul 12 2024 21:58:20
%S 1,1,9,25,241,1041,10681,60649,658785,4540321,51972841,415198521,
%T 4988808529,44847866545,563683953561,5586645006601,73228719433921,
%U 788319280278849,10747425123292105,124265401483446361,1757874020223846321,21640338257575264081
%N Expansion of e.g.f.: exp(x + 4*x^2).
%H Seiichi Manyama, <a href="/A293720/b293720.txt">Table of n, a(n) for n = 0..612</a>
%F a(n) ~ 2^((3*n-1)/2) * exp(-1/32 + sqrt(2*n)/4 - n/2) * n^(n/2). - _Vaclav Kotesovec_, Oct 15 2017
%F a(n) = (-2*i)^n * Hermite(n, i/4). - _G. C. Greubel_, Jul 12 2024
%t CoefficientList[Series[E^(x + 4*x^2), {x,0,30}], x] * Range[0,30]! (* _Vaclav Kotesovec_, Oct 15 2017 *)
%o (PARI) my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(x+4*x^2)))
%o (Magma)
%o R<x>:=PowerSeriesRing(Rationals(), 30);
%o Coefficients(R!(Laplace( Exp(x+4*x^2) ))); // _G. C. Greubel_, Jul 12 2024
%o (SageMath)
%o [(-2*i)^n*hermite(n, i/4) for n in range(31)] # _G. C. Greubel_, Jul 12 2024
%Y Column k=2 of A293724.
%Y Column k=8 of A359762.
%Y Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), this sequence (q=4).
%K nonn
%O 0,3
%A _Seiichi Manyama_, Oct 15 2017