login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158965
Numerator of Hermite(n, 3/5).
1
1, 6, -14, -684, -2004, 124776, 1249656, -29934864, -616988784, 8272012896, 327277030176, -2172344266944, -193036432198464, 145187966975616, 126344808730855296, 656437275502200576, -90819982895128268544, -1070069717772530072064, 70776567154223847830016
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 5^n * Hermite(n, 3/5).
E.g.f.: exp(6*x - 25*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/5)^(n-2*k)/(k!*(n-2*k)!)). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 3/5], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011*)
Table[5^n*HermiteH[n, 3/5], {n, 0, 30}] (* G. C. Greubel, Jul 13 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 3/5)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(6*x - 25*x^2))) \\ G. C. Greubel, Jul 13 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(6/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 13 2018
CROSSREFS
Sequence in context: A077401 A364530 A263695 * A284075 A281693 A013314
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved