login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263695
Even numbers such that the sum of the even divisors and the sum of the odd divisors are a square or a cube.
1
6, 14, 434, 636, 748, 762, 4620, 5964, 6204, 6324, 6580, 6820, 7084, 7660, 8404, 8636, 8804, 9010, 9710, 11342, 11920, 23622, 29820, 31020, 31620, 32844, 35420, 36204, 38964, 39804, 40044, 42020, 43180, 44020, 45724, 46004, 47564, 48484, 49146, 50644, 53444
OFFSET
1,1
COMMENTS
It seems that the two sums are never both a square or a cube.
Conjecture [False!]: All squares belonging to a pair are associated with a unique cube. Conversely, all cubes are associated with a unique square.
The corresponding pairs (sum of even divisors, sum of odd divisors) are (2^3, 2^2), (4^2, 2^3), (8^3, 16^2), (36^2, 6^3), (36^2, 6^3), (32^2, 8^3), 11 times the pair (24^3, 48^2), 3 times the pair (108^2, 18^3), (30^3, 30^2), (32^3, 128^2), 16 times the pair (288^2, 24^3),...
We observe several classes of numbers that generate identical pairs, for example:
{636, 748} => pair (36^2, 6^3);
{4620, 5964, 6204, 6324,... } => pair (24^3, 48^2);
{9010, 9710, 11342} => pair (108^2, 18^3);
{29820, 31020, 31620, 32844, 35420,... } => pair (288^2, 24^3);
{69576, 72168, 87752, 98552,...} => pair (56^3, 112^2);
The conjecture above is false. Consider for example the triples of numbers {69576, 938184, 7505472} or {958528, 952520, 12382760}. For the first one the (even, odd) sum of divisors pairs are (56^3, 112^2), (1568^2, 56^3), and (4704^2, 56^3). - Giovanni Resta, May 28 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
434 is in the sequence because the divisors are {1, 2, 7, 14, 31, 62, 217, 434} => sum of even divisors = 2+14+62+434 = 512 = 8^3 and sum of odd divisors = 1+7+31+217 = 256 = 16^2.
636 is in the sequence because the divisors are {1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636} => sum of even divisors = 2+4+6+12+106+212+318+636 = 1296 = 36^2 and sum of odd divisors = 1+3+53+159 = 216 = 6^3.
MAPLE
with(numtheory):
for n from 2 by 2 to 500000 do:
y:=divisors(n):n1:=nops(y):s0:=0:s1:=0:
for k from 1 to n1 do:
if irem(y[k], 2)=0
then
s0:=s0+ y[k]:
else
s1:=s1+ y[k]:
fi:
od:
ii:=0:
for a from 1 to 1000 while(ii=0)do:
for i from 2 to 3 do:
if s0=a^i
then
for b from 1 to 1000 while(ii=0) do:
if s1=b^(5-i)
then
ii:=1:printf(`%d, `, n):
else
fi:
od:
fi:
od:
od:
od:
MATHEMATICA
es[n_] := 2 DivisorSigma[1, n/2]; os[n_] := DivisorSigma[1, n] - es[n]; powQ[n_] := Or @@ IntegerQ /@ (n^(1/{2, 3})); Select[2 Range[10^4], powQ@ es@ # && powQ@ os@ # &] (* Giovanni Resta, May 28 2016 *)
PROG
(PARI) isA002760(n)=issquare(n) || ispower(n, 3)
is(n)=n%2==0 && isA002760(2*sigma(n/2)) && isA002760(sigma(n>>valuation(n, 2))) \\ Charles R Greathouse IV, Jun 08 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, May 28 2016
STATUS
approved