login
A281693
T(n,k)=Number of nXk 0..2 arrays with no element equal to more than one of its horizontal, diagonal or antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
8
0, 0, 0, 0, 0, 0, 1, 6, 15, 0, 2, 272, 847, 222, 0, 9, 2516, 14575, 19326, 2348, 0, 34, 19168, 172398, 402470, 293814, 21302, 0, 124, 120824, 1900616, 7497214, 8944910, 3714629, 176125, 0, 432, 692320, 17698286, 126719222, 269206287, 173467508, 42265965
OFFSET
1,8
COMMENTS
Table starts
.0........0..........0............1.............2..............9.............34
.0........0..........6..........272..........2516..........19168.........120824
.0.......15........847........14575........172398........1900616.......17698286
.0......222......19326.......402470.......7497214......126719222.....1847808312
.0.....2348.....293814......8944910.....269206287.....7098401706...164629898128
.0....21302....3714629....173467508....8480641650...352593003706.13101015889336
.0...176125...42265965...3105145787..247006584444.16285953756462
.0..1370378..449985840..52667675560.6815559005187
.0.10206549.4571830360.858903297578
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 12]
k=3: [order 15] for n>20
k=4: [order 48] for n>56
Empirical for row n:
n=1: a(n) = 6*a(n-1) -6*a(n-2) -16*a(n-3) +12*a(n-4) +24*a(n-5) +8*a(n-6) for n>10
n=2: [order 12] for n>15
n=3: [order 40] for n>45
EXAMPLE
Some solutions for n=3 k=4
..0..1..1..0. .0..1..2..2. .0..1..1..0. .0..1..2..0. .0..0..1..2
..2..1..0..0. .2..0..0..0. .1..0..1..0. .1..2..0..1. .2..0..1..2
..2..0..2..2. .1..0..2..0. .1..2..2..1. .0..1..2..1. .1..0..1..1
CROSSREFS
Column 2 is A279530.
Row 1 is A280309.
Sequence in context: A263695 A158965 A284075 * A013314 A328339 A019306
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 27 2017
STATUS
approved