login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263693
T(n,k)=Number of length n arrays of permutations of 0..n-1 with each element moved by -k to k places and every three consecutive elements having its maximum within 3 of its minimum.
4
1, 1, 2, 1, 2, 3, 1, 2, 6, 5, 1, 2, 6, 14, 7, 1, 2, 6, 24, 14, 11, 1, 2, 6, 24, 18, 16, 16, 1, 2, 6, 24, 36, 18, 22, 25, 1, 2, 6, 24, 36, 20, 24, 36, 37, 1, 2, 6, 24, 36, 36, 24, 40, 56, 57, 1, 2, 6, 24, 36, 36, 27, 40, 64, 85, 85, 1, 2, 6, 24, 36, 36, 48, 40, 64, 100, 125, 130, 1, 2, 6, 24, 36
OFFSET
1,3
COMMENTS
Table starts
...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1
...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2
...3...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6
...5..14..24..24..24..24..24..24..24..24..24..24..24..24..24..24..24..24..24
...7..14..18..36..36..36..36..36..36..36..36..36..36..36..36..36..36..36..36
..11..16..18..20..36..36..36..36..36..36..36..36..36..36..36..36..36..36..36
..16..22..24..24..27..48..48..48..48..48..48..48..48..48..48..48..48..48..48
..25..36..40..40..40..49..80..80..80..80..80..80..80..80..80..80..80..80..80
..37..56..64..64..64..64..76.128.128.128.128.128.128.128.128.128.128.128.128
..57..85.100.100.100.100.100.120.200.200.200.200.200.200.200.200.200.200.200
..85.125.144.144.144.144.144.144.168.288.288.288.288.288.288.288.288.288.288
.130.189.216.216.216.216.216.216.216.256.432.432.432.432.432.432.432.432.432
.195.285.324.324.324.324.324.324.324.324.380.648.648.648.648.648.648.648.648
LINKS
FORMULA
Empirical for diagonal: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) for n>12
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4)
k=2: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) for n>12
k=3: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) for n>12
k=4: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) for n>12
k=5: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) for n>12
k=6: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) for n>12
k=7: a(n) = a(n-1) +a(n-2) -a(n-3) +a(n-4) for n>13
EXAMPLE
Some solutions for n=7 k=4
..1....0....0....3....1....0....0....0....0....0....0....0....1....0....1....2
..0....2....1....0....0....1....1....1....1....2....1....2....0....1....0....0
..2....1....2....1....3....2....2....2....2....1....2....1....2....2....3....1
..3....3....3....2....2....4....3....4....3....3....4....4....3....4....2....3
..4....4....4....4....4....3....5....5....4....4....3....3....5....5....5....4
..6....5....6....5....5....6....4....6....5....6....5....6....6....3....4....6
..5....6....5....6....6....5....6....3....6....5....6....5....4....6....6....5
CROSSREFS
Column 1 is A130137(n-1).
Sequence in context: A249026 A263597 A263905 * A263714 A263703 A263752
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 23 2015
STATUS
approved