login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263694
Expansion of (1 + x + x^2 + x^3 + 4*x^4 - x^5 - x^6 - x^7 + 3*x^8)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)).
0
1, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12, 16, 15, 14, 13, 17, 18, 19, 20, 24, 23, 22, 21, 25, 26, 27, 28, 32, 31, 30, 29, 33, 34, 35, 36, 40, 39, 38, 37, 41, 42, 43, 44, 48, 47, 46, 45, 49, 50, 51, 52, 56, 55, 54, 53, 57, 58, 59, 60, 64, 63, 62, 61, 65, 66, 67, 68, 72, 71, 70, 69, 73, 74, 75
OFFSET
0,2
COMMENTS
In each group of 8 consecutive numbers, swap 5 and 8 terms, 6 and 7 terms.
FORMULA
G.f.: (1 + x + x^2 + x^3 + 4*x^4 - x^5 - x^6 - x^7 + 3*x^8)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)).
a(n) = a(n-1) + a(n-8) - a(n-9).
a(n) = 1 + n + 3*floor(n/4) - 2*floor((n+1)/8) - 2*floor((n+2)/8) - 2*floor((n+3)/8). - Vaclav Kotesovec, Apr 19 2016
MATHEMATICA
CoefficientList[Series[(1 + x + x^2 + x^3 + 4 x^4 - x^5 - x^6 - x^7 + 3 x^8)/((1 - x)^2 (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)), {x, 0, 75}], x]
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 2, 3, 4, 8, 7, 6, 5, 9}, 75]
PROG
(PARI) x='x+O('x^99); Vec((1+x+x^2+x^3+4*x^4-x^5-x^6-x^7+3*x^8)/((1-x)^2*(1+x+x^2+x^3 +x^4+x^5+x^6+x^7))) \\ Altug Alkan, Apr 18 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Apr 17 2016
STATUS
approved