The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210750 Triangle of coefficients of polynomials v(n,x) jointly generated with A210749; see the Formula section. 3
 1, 2, 3, 4, 8, 7, 7, 21, 24, 15, 12, 46, 78, 64, 31, 20, 96, 205, 247, 160, 63, 33, 190, 501, 756, 712, 384, 127, 54, 365, 1140, 2109, 2483, 1929, 896, 255, 88, 684, 2480, 5404, 7764, 7538, 5002, 2048, 511, 143, 1259, 5199, 13083, 22070, 26058 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row n starts with -1+F(n+2) and ends with -1+2^n, where F=A000045 (Fibonacci numbers). For a discussion and guide to related arrays, see A208510. LINKS FORMULA u(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1, v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1. EXAMPLE First five rows: 1 2....3 4....8....7 7....21...24...15 12...46...78...64...31 First three polynomials v(n,x): 1, 2 + 3x, 4 + 8x +7x^2 MATHEMATICA u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%]    (* A210749 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%]    (* A210750 *) CROSSREFS Cf. A210749, A208510. Sequence in context: A332778 A263694 A210743 * A036712 A036706 A336785 Adjacent sequences:  A210747 A210748 A210749 * A210751 A210752 A210753 KEYWORD nonn,tabl AUTHOR Clark Kimberling, Mar 25 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 16:40 EDT 2020. Contains 337969 sequences. (Running on oeis4.)