login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210749
Triangle of coefficients of polynomials u(n,x) jointly generated with A210750; see the Formula section.
3
1, 3, 1, 6, 7, 1, 11, 21, 15, 1, 19, 53, 60, 31, 1, 32, 118, 191, 155, 63, 1, 53, 246, 514, 593, 378, 127, 1, 87, 489, 1261, 1863, 1683, 889, 255, 1, 142, 941, 2890, 5233, 6029, 4501, 2040, 511, 1, 231, 1767, 6311, 13527, 19026, 18068, 11543, 4599
OFFSET
1,2
COMMENTS
Row n starts with -2+F(n+3) and ends with 1, where F=A000045 (Fibonacci numbers).
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3....1
6....7....1
11...21...15...1
19...53...60...31...1
First three polynomials u(n,x): 1, 3+ x, 6 + 7x + x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210749 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210750 *)
CROSSREFS
Sequence in context: A209696 A338995 A359574 * A330587 A350647 A199662
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 25 2012
STATUS
approved