login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210747
Triangle of coefficients of polynomials u(n,x) jointly generated with A210748; see the Formula section.
3
1, 2, 3, 4, 9, 8, 7, 24, 33, 21, 12, 54, 109, 111, 55, 20, 114, 297, 435, 355, 144, 33, 228, 736, 1383, 1606, 1098, 377, 54, 441, 1697, 3912, 5813, 5625, 3316, 987, 88, 831, 3723, 10158, 18419, 22779, 18962, 9837, 2584, 143, 1536, 7859, 24798
OFFSET
1,2
COMMENTS
Row n starts with -1+F(n+2) and ends with F(2n), where F=A000045 (Fibonacci numbers).
Row sums: A002450
Alternating row sums: A077925
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....3
4....9....8
7....24...33....21
12...54...109...111...55
First three polynomials u(n,x): 1, 2+ 3x, 4 + 9x + 8x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210747 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210748 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A002450 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A002450 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A077925 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000012 *)
CROSSREFS
Cf. A208510.
Sequence in context: A307404 A307405 A115305 * A353239 A351497 A329425
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 25 2012
STATUS
approved