login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210744
Triangle of coefficients of polynomials v(n,x) jointly generated with A210743; see the Formula section.
3
1, 3, 1, 6, 6, 3, 11, 18, 18, 7, 19, 45, 63, 49, 17, 32, 100, 182, 200, 133, 41, 53, 208, 464, 658, 613, 356, 99, 87, 413, 1094, 1886, 2244, 1823, 944, 239, 142, 794, 2437, 4940, 7093, 7325, 5302, 2483, 577, 231, 1490, 5206, 12113, 20311, 25220
OFFSET
1,2
COMMENTS
Row n starts with -2+F(n+3), where F=A000045 (Fibonacci numbers) and ends with A001333(n-1).
Alternating row sums: 1,2,3,4,5,6,7,8,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3....1
6....6....3
11...18...18...7
19...45...63...49...17
First three polynomials v(n,x): 1, 3 + x, 6 + 6x +3x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210743 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210744 *)
CROSSREFS
Sequence in context: A116412 A089511 A246257 * A242729 A112692 A291217
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 24 2012
STATUS
approved