login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210742
Triangle of coefficients of polynomials v(n,x) jointly generated with A210741; see the Formula section.
3
1, 3, 2, 5, 9, 5, 7, 20, 27, 13, 9, 35, 73, 80, 34, 11, 54, 151, 252, 234, 89, 13, 77, 269, 597, 837, 677, 233, 15, 104, 435, 1199, 2225, 2702, 1941, 610, 17, 135, 657, 2158, 4956, 7943, 8533, 5523, 1597, 19, 170, 943, 3590, 9796, 19387, 27435, 26479
OFFSET
1,2
COMMENTS
Row n starts with 2n-1 and ends with an odd-indexed
Fibonacci number.
Row sums: A035344
Alternate row sums: 1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3...2
5...9....5
7...20...27...13
9...35...73...80...34
First three polynomials v(n,x): 1, 3 + 2x, 5 + 9x + 5x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210741 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210742 *)
CROSSREFS
Sequence in context: A173701 A116627 A254331 * A175056 A320274 A333398
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 24 2012
STATUS
approved