login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210741
Triangle of coefficients of polynomials u(n,x) jointly generated with A210742; see the Formula section.
3
1, 1, 3, 1, 5, 8, 1, 7, 19, 21, 1, 9, 34, 65, 55, 1, 11, 53, 141, 210, 144, 1, 13, 76, 257, 534, 654, 377, 1, 15, 103, 421, 1111, 1905, 1985, 987, 1, 17, 134, 641, 2041, 4447, 6512, 5911, 2584, 1, 19, 169, 925, 3440, 9038, 16837, 21557, 17345, 6765, 1
OFFSET
1,3
COMMENTS
Rows end with even-indexed Fibonacci numbers
Row sums: A007070
Alternating row sums: signed powers of 2
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...3
1...5...8
1...7...19...21
1...9...34...65...55
First three polynomials u(n,x): 1, 1+ 3x, 1 + 5x + 8x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210741 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210742 *)
CROSSREFS
Sequence in context: A302191 A261712 A038738 * A208760 A340156 A340242
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 24 2012
STATUS
approved