login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210738
Triangle of coefficients of polynomials v(n,x) jointly generated with A210603; see the Formula section.
3
1, 3, 2, 6, 9, 4, 11, 25, 23, 8, 19, 60, 81, 55, 16, 32, 130, 237, 233, 127, 32, 53, 266, 610, 798, 625, 287, 64, 87, 522, 1451, 2364, 2439, 1601, 639, 128, 142, 995, 3255, 6373, 8138, 6984, 3969, 1407, 256, 231, 1855, 6995, 16007, 24430, 25832
OFFSET
1,2
COMMENTS
Row n starts with F(n+3)-2, where F=A000045 (Fibonacci
numbers), and ends with 2^(n-1). For a discussion and
guide to related arrays, see A208510.
FORMULA
u(n,x)=2x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3....2
6....9....4
11...25...23...8
19...60...81...55...16
First three polynomials v(n,x): 1, 3 + 2x, 6 + 9x + 4x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210603 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210738 *)
CROSSREFS
Sequence in context: A318049 A352877 A210754 * A210601 A197493 A300070
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 24 2012
STATUS
approved