login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210603
Triangle of coefficients of polynomials u(n,x) jointly generated with A210738; see the Formula section.
3
1, 2, 2, 4, 6, 4, 7, 17, 16, 8, 12, 39, 57, 40, 16, 20, 84, 159, 169, 96, 32, 33, 170, 405, 551, 465, 224, 64, 54, 332, 950, 1608, 1727, 1217, 512, 128, 88, 630, 2115, 4264, 5655, 5055, 3073, 1152, 256, 143, 1171, 4515, 10603, 16666, 18294, 14079
OFFSET
1,2
COMMENTS
Row n starts with F(n+2)-1, where F=A000045 (Fibonacci
numbers), and ends with 2^(n-1). For a discussion and
guide to related arrays, see A208510.
FORMULA
u(n,x)=2x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....2
4....6....4
7....17...16...8
12...39...57...40...16
First three polynomials u(n,x): 1, 2+ 2x, 4 + 6x + 4x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210603 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210738 *)
CROSSREFS
Sequence in context: A085730 A232065 A219741 * A252820 A218765 A219310
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 24 2012
STATUS
approved