login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246257
Triangular array read by rows: T(n, k) = S(n, [n/2]-k) and S(n,k) = C(n, 2*k)*(2*k-1)!!*((2*k-1)!! + 1)/2, n>=0, 0<=k<=[n/2].
1
1, 1, 1, 1, 3, 1, 6, 6, 1, 30, 10, 1, 120, 90, 15, 1, 840, 210, 21, 1, 5565, 3360, 420, 28, 1, 50085, 10080, 756, 36, 1, 446985, 250425, 25200, 1260, 45, 1, 4916835, 918225, 55440, 1980, 55, 1, 54033210, 29501010, 2754675, 110880, 2970, 66, 1
OFFSET
0,5
FORMULA
T(n, k) = (n!/(j!*(n-2*j)!))*(2^(-j-1)+Gamma(j+1/2)/sqrt(4*Pi)) where j = floor(n/2) - k.
EXAMPLE
Triangle starts:
[ 0] 1,
[ 1] 1,
[ 2] 1, 1,
[ 3] 3, 1,
[ 4] 6, 6, 1,
[ 5] 30, 10, 1,
[ 6] 120, 90, 15, 1,
[ 7] 840, 210, 21, 1,
[ 8] 5565, 3360, 420, 28, 1,
[ 9] 50085, 10080, 756, 36, 1,
[10] 446985, 250425, 25200, 1260, 45, 1.
MAPLE
T := proc(n, k) local j; j := iquo(n, 2) - k;
(n!/(j!*(n-2*j)!))*(2^(-j-1)+GAMMA(j+1/2)/sqrt(4*Pi)) end:
seq(print(seq(T(n, k), k=0..iquo(n, 2))), n=0..10);
MATHEMATICA
row[n_] := FunctionExpand[HypergeometricPFQ[{-n/2, (1-n)/2}, {}, 2z] + HypergeometricPFQ[{1/2, -n/2, (1-n)/2}, {}, 4z]]/2 // CoefficientList[#, z]& // Reverse;
Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
PROG
(Sage)
from sage.functions.hypergeometric import closed_form
def A246257_row(n):
R.<z> = ZZ[]
h = hypergeometric([-n/2, (1-n)/2], [], 2*z)
g = hypergeometric([1/2, -n/2, (1-n)/2], [], 4*z)
T = R(((closed_form(h)+closed_form(g))/2)).coefficients()
return T[::-1]
for n in range(13): A246257_row(n)
CROSSREFS
Cf. A002771 (row sums), A246256, A096713.
Sequence in context: A210287 A116412 A089511 * A210744 A242729 A112692
KEYWORD
tabf,nonn
AUTHOR
Peter Luschny, Aug 21 2014
STATUS
approved