login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116412
Riordan array ((1+x)/(1-2x),x(1+x)/(1-2x)).
4
1, 3, 1, 6, 6, 1, 12, 21, 9, 1, 24, 60, 45, 12, 1, 48, 156, 171, 78, 15, 1, 96, 384, 558, 372, 120, 18, 1, 192, 912, 1656, 1473, 690, 171, 21, 1, 384, 2112, 4608, 5160, 3225, 1152, 231, 24, 1, 768, 4800, 12240, 16584, 13083, 6219, 1785, 300, 27, 1, 1536, 10752
OFFSET
0,2
COMMENTS
Row sums are A003688. Diagonal sums are A116413. Product of A007318 and A116413 is A116414. Product of A007318 and A105475.
Subtriangle of triangle given by (0, 3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 18 2012
LINKS
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
Number triangle T(n,k)=sum{j=0..n, C(k+1,j)*C(n-j,k)2^(n-k-j)}
From Vladimir Kruchinin, Mar 17 2011: (Start)
T((m+1)*n+r-1, m*n+r-1) * r/(m*n+r) = sum(k=1..n, k/n * T((m+1)*n-k-1, m*n-1) * T(r+k-1,r-1)), n>=m>1.
T(n-1,m-1) = m/n * sum(k=1..n-m+1, k*A003945(k-1)*T(n-k-1,m-2)), n>=m>1. (End)
G.f.: (1+x)/(1-(y+2)*x -y*x^2). - Philippe Deléham, Jan 18 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A104537(n), A110523(n), (-2)^floor(n/2), A057079(n), A003945(n), A003688(n+1), A123347(n), A180035(n) for x = -4, -3, -2, -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Jan 18 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(2,0) = T(2,1) = 6, T(2,2) = 1, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Oct 31 2013
EXAMPLE
Triangle begins
1,
3, 1,
6, 6, 1,
12, 21, 9, 1,
24, 60, 45, 12, 1,
48, 156, 171, 78, 15, 1
Triangle T(n,k), 0<=k<=n, given by (0, 3, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins :
1
0, 1
0, 3, 1
0, 6, 6, 1
0, 12, 21, 9, 1
0, 24, 60, 45, 12, 1
0, 48, 156, 171, 78, 15, 1
... - Philippe Deléham, Jan 18 2012
MATHEMATICA
With[{n = 10}, DeleteCases[#, 0] & /@ CoefficientList[Series[(1 + x)/(1 - (y + 2) x - y x^2), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
CROSSREFS
Sequence in context: A325013 A152685 A210287 * A089511 A246257 A210744
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 13 2006
STATUS
approved