login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Riordan array ((1+x)/(1-2x),x(1+x)/(1-2x)).
4

%I #37 Oct 29 2022 16:06:59

%S 1,3,1,6,6,1,12,21,9,1,24,60,45,12,1,48,156,171,78,15,1,96,384,558,

%T 372,120,18,1,192,912,1656,1473,690,171,21,1,384,2112,4608,5160,3225,

%U 1152,231,24,1,768,4800,12240,16584,13083,6219,1785,300,27,1,1536,10752

%N Riordan array ((1+x)/(1-2x),x(1+x)/(1-2x)).

%C Row sums are A003688. Diagonal sums are A116413. Product of A007318 and A116413 is A116414. Product of A007318 and A105475.

%C Subtriangle of triangle given by (0, 3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Jan 18 2012

%H Michael De Vlieger, <a href="/A116412/b116412.txt">Table of n, a(n) for n = 0..11475</a>

%H Milan Janjić, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Janjic/janjic93.html">Words and Linear Recurrences</a>, J. Int. Seq. 21 (2018), #18.1.4.

%H Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.

%F Number triangle T(n,k)=sum{j=0..n, C(k+1,j)*C(n-j,k)2^(n-k-j)}

%F From _Vladimir Kruchinin_, Mar 17 2011: (Start)

%F T((m+1)*n+r-1, m*n+r-1) * r/(m*n+r) = sum(k=1..n, k/n * T((m+1)*n-k-1, m*n-1) * T(r+k-1,r-1)), n>=m>1.

%F T(n-1,m-1) = m/n * sum(k=1..n-m+1, k*A003945(k-1)*T(n-k-1,m-2)), n>=m>1. (End)

%F G.f.: (1+x)/(1-(y+2)*x -y*x^2). - _Philippe Deléham_, Jan 18 2012

%F Sum_{k, 0<=k<=n} T(n,k)*x^k = A104537(n), A110523(n), (-2)^floor(n/2), A057079(n), A003945(n), A003688(n+1), A123347(n), A180035(n) for x = -4, -3, -2, -1, 0, 1, 2, 3 respectively. - _Philippe Deléham_, Jan 18 2012

%F T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(2,0) = T(2,1) = 6, T(2,2) = 1, T(n,k) = 0 if k>n or if k<0. - _Philippe Deléham_, Oct 31 2013

%e Triangle begins

%e 1,

%e 3, 1,

%e 6, 6, 1,

%e 12, 21, 9, 1,

%e 24, 60, 45, 12, 1,

%e 48, 156, 171, 78, 15, 1

%e Triangle T(n,k), 0<=k<=n, given by (0, 3, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins :

%e 1

%e 0, 1

%e 0, 3, 1

%e 0, 6, 6, 1

%e 0, 12, 21, 9, 1

%e 0, 24, 60, 45, 12, 1

%e 0, 48, 156, 171, 78, 15, 1

%e ... - _Philippe Deléham_, Jan 18 2012

%t With[{n = 10}, DeleteCases[#, 0] & /@ CoefficientList[Series[(1 + x)/(1 - (y + 2) x - y x^2), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* _Michael De Vlieger_, Apr 25 2018 *)

%Y Cf. A003688, A003945.

%K easy,nonn,tabl

%O 0,2

%A _Paul Barry_, Feb 13 2006