login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096713
Irregular triangle T(n,k) of nonzero coefficients of the modified Hermite polynomials (n >= 0 and 0 <= k <= floor(n/2)).
12
1, 1, -1, 1, -3, 1, 3, -6, 1, 15, -10, 1, -15, 45, -15, 1, -105, 105, -21, 1, 105, -420, 210, -28, 1, 945, -1260, 378, -36, 1, -945, 4725, -3150, 630, -45, 1, -10395, 17325, -6930, 990, -55, 1, 10395, -62370, 51975, -13860, 1485, -66, 1, 135135, -270270, 135135, -25740, 2145, -78, 1
OFFSET
0,5
COMMENTS
Triangle of nonzero coefficients of matching polynomial of complete graph of order n.
Row sums of absolute values produce A000085 (number of involutions). - Wouter Meeussen, Mar 12 2008
Row n has floor(n/2) + 1 nonzero coefficients. - Robert Israel, Dec 23 2015
Also the nonzero terms of the Bell matrix generated by the sequence [-1,1,0,0,0, ...] read by rows (see second Sage program). For the definition of the Bell matrix see A264428. - Peter Luschny, Jan 20 2016
From Petros Hadjicostas, Oct 28 2019: (Start)
The formulas about the p.d.f. of the standard normal distribution were proved, for example, by Charlier (1905, pp. 13-15), but they were well-known for many years before him. Charlier (1905) has generalized these results to other measures whose n-th moment (around 0) exists for each integer n >= 0.
Different forms (with or without signs) of these coefficients T(n,k) appear in other arrays as well; e.g., see A049403, A104556, A122848, A130757 (odd rows only), etc.
(End)
REFERENCES
C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10099 (rows 0 to 199, flattened)
Carl V. L. Charlier, Über die Darstellung willkürlicher Funktionen, Arkiv För Matematik, Astronomi Och Fysik, Band 2, No. 20 (Meddelande från Lunds Astronomiska Observatorium, Series I, No. 27), 1905, 1-35. [Accessible only in the USA via the HathiTrust Digital Library.]
Tom Halverson and Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018.
Eric Weisstein's World of Mathematics, Hermite Polynomial.
Eric Weisstein's World of Mathematics, Matching Polynomial. - Eric W. Weisstein, Sep 27 2008
FORMULA
G.f.: HermiteH(n,x/sqrt(2))/2^(n/2). - Wouter Meeussen, Mar 12 2008
From Robert Israel, Dec 23 2015: (Start)
T(2*m, k) = (-1)^(m+k)*(2*m)!*2^(k-m)/((m-k)!*(2*k)!), k = 0..m.
T(2*m+1, k) = (-1)^(m+k)*(2*m+1)!*2^(k-m)/((m-k)!*(2*k+1)!), k = 0..m. (End)
From Petros Hadjicostas, Oct 28 2019: (Start)
Let He_n(x) be the n-th modified Hermite polynomial (see the references above); i.e., let He_n(x) = Sum_{k = 0..m} T(2*m, k)*x^(2*k) when n = 2*m and He_n(x) = Sum_{k = 0..m} T(2*m+1, k)*x^(2*k+1) when n = 2*m+1.
Let phi(x) = (1/sqrt(2*Pi)) * exp(-x^2/2) be the p.d.f. of a standard normal distribution. Then He_n(x) = (-1)^n * (1/phi(x)) * d^n(phi(x))/dx^n for n >= 0.
We have He_n(x) = x*He_{n-1}(x) - (n-1)*He_{n-2}(x) for n >= 2. (End)
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
1;
1;
-1, 1;
-3, 1;
3, -6, 1;
15, -10, 1;
-15, 45, -15, 1;
-105, 105, -21, 1;
105, -420, 210, -28, 1;
945, -1260, 378, -36, 1;
...
The corresponding modified Hermite polynomials are as follows
He_0(x) = 1, He_1(x) = x,
He_2(x) = -1 + x^2, He_3(x) = -3*x + x^3,
He_4(x) = 3 - 6*x^2 + x^4, He_5(x) = 15*x - 10*x^3 + x^5, ...
[Modified by Petros Hadjicostas, Oct 28 2019]
MAPLE
A:= NULL:
for n from 0 to 20 do
HH:= expand(orthopoly[H](n, x/sqrt(2))/2^(n/2));
C:= subs(0=NULL, [seq(coeff(HH, x, j), j=0..n)]);
A:= A, op(C);
od:
A; # Robert Israel, Dec 23 2015
# Alternatively:
A096713 := (n, k) -> `if`(2*k<n, NULL, (-1/2)^(n-k)*n!/((2*k-n)!*(n-k)!)):
seq(seq(A096713(n, k), k=0..n), n=0..13); # Peter Luschny, Dec 24 2015
MATHEMATICA
Table[CoefficientList[HermiteH[n, x/Sqrt[2] ]/2^(n/2), x], {n, 0, 25}] (* Wouter Meeussen, Mar 12 2008 *)
PROG
(PARI) T(n, k)=if(k<0||2*k>n, 0, (-1)^(n\2-k)*n!/(n\2-k)!/(n%2+2*k)!/2^(n\2-k)) /* Michael Somos, Jun 04 2005 */
(Sage)
from sage.functions.hypergeometric import closed_form
def A096713_row(n):
R.<z> = ZZ[]
h = hypergeometric([-n/2, (1-n)/2], [], -2*z)
T = R(closed_form(h)).coefficients()
return T[::-1]
for n in range(13): A096713_row(n) # Peter Luschny, Aug 21 2014
(Sage) # uses[bell_transform from A264428]
def bell_zero_filter(generator, dim):
G = [generator(k) for k in srange(dim)]
row = lambda n: bell_transform(n, G)
F = [filter(lambda r: r != 0, R) for R in [row(n) for n in srange(dim)]]
return [i for f in F for i in f]
print(bell_zero_filter(lambda n: [1, -1][n] if n < 2 else 0, 14)) # Peter Luschny, Jan 20 2016
(Python)
from sympy import hermite, Poly, sqrt
def a(n): return Poly(hermite(n, x/sqrt(2))/2**(n/2), x).coeffs()[::-1]
for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Eric W. Weisstein, Jul 04 2004
STATUS
approved