login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130137
Number of Fibonacci binary words of length n having no 0110 subword. A Fibonacci binary word is a binary word having no 00 subword.
5
1, 2, 3, 5, 7, 11, 16, 25, 37, 57, 85, 130, 195, 297, 447, 679, 1024, 1553, 2345, 3553, 5369, 8130, 12291, 18605, 28135, 42579, 64400, 97449, 147405, 223033, 337389, 510466, 772227, 1168337, 1767487, 2674063, 4045440, 6120353, 9259217, 14008193
OFFSET
0,2
FORMULA
G.f.: (1+z+z^3)/(1-z-z^2+z^3-z^4).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4); a(0)=1, a(1)=2, a(2)=3, a(3)=5.
a(n) = A130136(n,0).
EXAMPLE
a(4)=7 because from the 8 Fibonacci binary words of length 4 only 0110 does not qualify.
MAPLE
a[0]:=1: a[1]:=2: a[2]:=3: a[3]:=5: for n from 4 to 45 do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-4] od: seq(a[n], n=0..45);
MATHEMATICA
LinearRecurrence[{1, 1, -1, 1}, {1, 2, 3, 5}, 40] (* Jean-François Alcover, Aug 25 2021 *)
CROSSREFS
Cf. A130136.
Sequence in context: A271485 A018057 A355907 * A218022 A374151 A091980
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 13 2007
STATUS
approved