The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130138 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 1011's (n>=0, 0<=k<=floor((n-1)/3)). A Fibonacci binary word is a binary word having no 00 subword. 0
 1, 2, 3, 5, 7, 1, 9, 4, 11, 10, 13, 20, 1, 15, 35, 5, 17, 56, 16, 19, 84, 40, 1, 21, 120, 86, 6, 23, 165, 166, 23, 25, 220, 296, 68, 1, 27, 286, 496, 171, 7, 29, 364, 791, 382, 31, 31, 455, 1211, 781, 105, 1, 33, 560, 1792, 1488, 300, 8, 35, 680, 2576, 2678, 756, 40, 37 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row n has 1+floor((n-1)/3) terms. Row sums are the Fibonacci numbers (A000045). T(n,0)=A004280(n+1). Sum(k*T(n,k), k>=0)=A004798(n-3) (n>=4). LINKS FORMULA G.f.=G(t,z)=(1+z)(1+z^3-tz^3)/[1-z-z^2+z^3-tz^3]. EXAMPLE T(7,2)=1 because we have 1011011. Triangle starts: 1; 2; 3; 5; 7,1; 9,4; 11,10; 13,20,1; 15,35,5; MAPLE G:=(1+z)*(1+z^3-t*z^3)/(1-z-z^2+z^3-t*z^3): Gser:=simplify(series(G, z=0, 24)): for n from 0 to 21 do P[n]:=sort(coeff(Gser, z, n)) od: 1; for n from 1 to 21 do seq(coeff(P[n], t, j), j=0..floor((n-1)/3)) od; # yields sequence in triangular form CROSSREFS Cf. A000045, A004280, A004798. Sequence in context: A178743 A126052 A321128 * A171855 A130136 A197124 Adjacent sequences:  A130135 A130136 A130137 * A130139 A130140 A130141 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, May 13 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 10:18 EDT 2020. Contains 334858 sequences. (Running on oeis4.)