The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130136 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 0110's (n>=0, 0<=k<=floor((n-1)/3)). A Fibonacci binary word is a binary word having no 00 subword. 1
 1, 2, 3, 5, 7, 1, 11, 2, 16, 5, 25, 8, 1, 37, 16, 2, 57, 26, 6, 85, 48, 10, 1, 130, 78, 23, 2, 195, 136, 39, 7, 297, 220, 80, 12, 1, 447, 371, 136, 31, 2, 679, 598, 258, 54, 8, 1024, 987, 437, 121, 14, 1, 1553, 1584, 790, 212, 40, 2, 2345, 2576, 1332, 432, 71, 9, 3553 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row n has 1+floor((n-1)/3) terms. Row sums are the Fibonacci numbers (A000045). T(n,0)=A130137(n). Sum(k*T(n,k), k>=0)=A001629(n-2) (n>=2). LINKS FORMULA G.f.=G(t,z)=[1+z+(1-t)z^3]/[1-z-z^2+(1-t)z^3-(1-t)z^4]. EXAMPLE T(8,2)=2 because we have 01101101 and 10110110. Triangle starts: 1; 2; 3; 5; 7,1; 11,2; 16,5; 25,8,1; MAPLE G:=(1+z+z^3-t*z^3)/(1-z-z^2+z^3-t*z^3-z^4+t*z^4): Gser:=simplify(series(G, z=0, 23)): for n from 0 to 23 do P[n]:=sort(coeff(Gser, z, n)) od: 1; for n from 1 to 20 do seq(coeff(P[n], t, j), j=0..floor((n-1)/3)) od; # yields sequence in triangular form CROSSREFS Cf. A000045, A001629, A130137. Sequence in context: A321128 A130138 A171855 * A197124 A032759 A142711 Adjacent sequences:  A130133 A130134 A130135 * A130137 A130138 A130139 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, May 13 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 14:47 EDT 2020. Contains 334684 sequences. (Running on oeis4.)