login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130136 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 0110's (n>=0, 0<=k<=floor((n-1)/3)). A Fibonacci binary word is a binary word having no 00 subword. 1
1, 2, 3, 5, 7, 1, 11, 2, 16, 5, 25, 8, 1, 37, 16, 2, 57, 26, 6, 85, 48, 10, 1, 130, 78, 23, 2, 195, 136, 39, 7, 297, 220, 80, 12, 1, 447, 371, 136, 31, 2, 679, 598, 258, 54, 8, 1024, 987, 437, 121, 14, 1, 1553, 1584, 790, 212, 40, 2, 2345, 2576, 1332, 432, 71, 9, 3553 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row n has 1+floor((n-1)/3) terms. Row sums are the Fibonacci numbers (A000045). T(n,0)=A130137(n). Sum(k*T(n,k), k>=0)=A001629(n-2) (n>=2).

LINKS

Table of n, a(n) for n=0..64.

FORMULA

G.f.=G(t,z)=[1+z+(1-t)z^3]/[1-z-z^2+(1-t)z^3-(1-t)z^4].

EXAMPLE

T(8,2)=2 because we have 01101101 and 10110110.

Triangle starts:

1;

2;

3;

5;

7,1;

11,2;

16,5;

25,8,1;

MAPLE

G:=(1+z+z^3-t*z^3)/(1-z-z^2+z^3-t*z^3-z^4+t*z^4): Gser:=simplify(series(G, z=0, 23)): for n from 0 to 23 do P[n]:=sort(coeff(Gser, z, n)) od: 1; for n from 1 to 20 do seq(coeff(P[n], t, j), j=0..floor((n-1)/3)) od; # yields sequence in triangular form

CROSSREFS

Cf. A000045, A001629, A130137.

Sequence in context: A126052 A130138 A171855 * A197124 A032759 A142711

Adjacent sequences:  A130133 A130134 A130135 * A130137 A130138 A130139

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, May 13 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 23:12 EDT 2018. Contains 316275 sequences. (Running on oeis4.)