login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271485
Maximal term of TRIP-Stern sequence of level n corresponding to permutation triple (e,13,e).
5
1, 2, 3, 5, 7, 11, 16, 25, 36, 56, 81, 126, 182, 283, 409, 636, 919, 1429, 2065, 3211, 4640, 7215, 10426, 16212, 23427, 36428, 52640, 81853, 118281, 183922, 265775, 413269, 597191, 928607, 1341876, 2086561, 3015168, 4688460, 6775021, 10534874, 15223334
OFFSET
0,2
LINKS
Ilya Amburg, Krishna Dasaratha, Laure Flapan, Thomas Garrity, Chansoo Lee, Cornelia Mihaila, Nicholas Neumann-Chun, Sarah Peluse, Matthew Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 2015. See Conjecture 5.8.
FORMULA
Conjectures from Colin Barker, Apr 16 2016: (Start)
a(n) = 2*a(n-2)+a(n-4)-a(n-6) for n>5.
G.f.: (1+x)*(1+x-x^2)*(1+x^2) / (1-2*x^2-x^4+x^6).
(End)
MAPLE
A271485T := proc(n)
option remember;
local an ;
if n = 1 then
[1, 1, 1] ;
else
an := procname(floor(n/2)) ;
if type(n, 'even') then
# apply F0
[op(1, an)+op(3, an), op(3, an), op(2, an)] ;
else
# apply F1
[op(1, an), op(2, an), op(1, an)+op(3, an)] ;
end if;
end if;
end proc:
A271485 := proc(n)
local a, l, nmax;
a := 0 ;
for l from 2^n to 2^(n+1)-1 do
nmax := max( op(A271485T(l)) );
a := max(a, nmax) ;
end do:
a ;
end proc: # R. J. Mathar, Apr 16 2016
MATHEMATICA
A271487T[n_] := A271487T[n] = Module[{an}, If[n == 1, {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[1]] + an[[3]], an[[3]], an[[2]]}, {an[[1]], an[[2]], an[[1]] + an[[3]]}]]];
a[n_] := a[n] = Module[{a = 0, l, nMax}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, nMax = Max[A271487T[l]]; a = Max[a, nMax]]; a];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 17 2017, after R. J. Mathar *)
CROSSREFS
For sequences mentioned in Conjecture 5.8 of Amburg et al. (2015) see A271485, A000930, A271486, A271487, A271488, A164001, A000045, A271489.
Sequence in context: A333588 A117792 A154888 * A018057 A355907 A130137
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Apr 13 2016
EXTENSIONS
a(20)-a(40) from Lars Blomberg, Jan 08 2018
STATUS
approved