login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271489
Maximal term of TRIP-Stern sequence of level n corresponding to permutation triple (e,132,e).
5
1, 2, 3, 4, 5, 7, 10, 13, 18, 25, 34, 46, 64, 85, 117, 163, 217, 298, 415, 553, 759, 1057, 1408, 1933, 2692, 3586, 4923, 6856, 9133, 12538, 17461, 23260, 31932, 44470, 59239, 81325, 113257, 150871, 207120, 288445, 384241
OFFSET
0,2
LINKS
I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 2015-2017. See Conjecture 5.8.
FORMULA
Conjectures from Lars Blomberg, Jan 08 2018: (Start)
n mod 3 == 0: a(n)=a(n-1)+a(n-4) for n>5.
n mod 3 == 1: a(n)=a(n-1)+a(n-4)-a(n-10) for n>9.
n mod 3 == 2: a(n)=a(n-1)+a(n-4)-a(n-14)-a(n-21) for n>22.
(End)
Conjectures from Colin Barker, Jan 09 2018: (Start)
G.f.: (1 + 2*x + 3*x^2 + 2*x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^10 - x^13) / (1 - 2*x^3 - x^6 - x^9).
a(n) = 2*a(n-3) + a(n-6) + a(n-9) for n>8.
(End)
MAPLE
A271489T := proc(n)
option remember;
local an, nrecur ;
if n = 1 then
[1, 1, 1] ;
else
an := procname(floor(n/2)) ;
if type(n, 'even') then
# apply F0
[op(3, an), op(1, an)+op(3, an), op(2, an)] ;
else
# apply F1
[op(1, an), op(2, an), op(1, an)+op(3, an)] ;
end if;
end if;
end proc;
A271489 := proc(n)
local a, l, nmax;
a := 0 ;
for l from 2^n to 2^(n+1)-1 do
nmax := max( op(A271489T(l)) );
a := max(a, nmax) ;
end do:
a ;
end proc: # R. J. Mathar, Apr 16 2016
MATHEMATICA
A271487T[n_] := A271487T[n] = Module[{an}, If[n == 1, {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[3]], an[[1]] + an[[3]], an[[2]]}, {an[[1]], an[[2]], an[[1]] + an[[3]]}]]];
a[n_] := a[n] = Module[{a = 0, l, nMax}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, nMax = Max[A271487T[l]]; a = Max[a, nMax]]; a];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 17 2017, after R. J. Mathar *)
CROSSREFS
For sequences mentioned in Conjecture 5.8 of Amburg et al. (2015) see A271485, A000930, A271486, A271487, A271488, A164001, A000045, A271489.
Sequence in context: A174578 A241733 A241338 * A018127 A017835 A007601
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Apr 13 2016
EXTENSIONS
a(11)-a(20) b R. J. Mathar, Apr 16 2016
a(21)-a(40) from Lars Blomberg, Jan 08 2018
STATUS
approved