login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271487 Maximal term of TRIP-Stern sequence of level n corresponding to permutation triple (e,13,132). 11
1, 2, 3, 4, 6, 8, 11, 17, 23, 32, 48, 65, 90, 136, 184, 255, 385, 521, 722, 1090, 1475, 2044, 3086, 4176, 5787, 8737, 11823, 16384, 24736, 33473, 46386, 70032, 94768, 131327, 198273, 268305, 371810, 561346, 759619, 1052660, 1589270 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..40.

I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239v1 [math.CO] 17 Sep 2015. See Conjecture 5.8.

FORMULA

Conjectures from Colin Barker, Apr 16 2016: (Start)

a(n) = 2*a(n-3)+2*a(n-6)+a(n-9) for n>9.

G.f.: (1+x)*(1+x+2*x^2+2*x^4+x^6+x^8) / (1-2*x^3-2*x^6-x^9).

(End)

MAPLE

A271487T := proc(n)

    option remember;

    local an ;

    if n = 1 then

        [1, 1, 1] ;

    else

        an := procname(floor(n/2)) ;

        if type(n, 'even') then

            # apply F0

            [op(1, an)+op(3, an), op(3, an), op(2, an)] ;

        else

            # apply F1

            [op(2, an), op(1, an)+op(3, an), op(1, an)] ;

        end if;

    end if;

end proc;

A271487 := proc(n)

    local a, l, nmax;

    a := 0 ;

    for l from 2^n to 2^(n+1)-1 do

        nmax := max( op(A271487T(l)) );

        a := max(a, nmax) ;

    end do:

    a ;

end proc: # R. J. Mathar, Apr 16 2016

MATHEMATICA

A271487T[n_] := A271487T[n] = Module[{an}, If[n == 1 , {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[1]] + an[[3]], an[[3]], an[[2]]}, {an[[2]], an[[1]] + an[[3]], an[[1]]}]]];

a[n_] := a[n] = Module[{a = 0, l, nMax}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, nMax = Max[A271487T[l]]; a = Max[a, nMax]]; a];

Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 24}] (* Jean-François Alcover, Nov 17 2017, after R. J. Mathar *)

CROSSREFS

For sequences mentioned in Conjecture 5.8 of Amburg et al. (2015) see A271485, A000930, A271486, A271487, A271488, A164001, A000045, A271489.

Sequence in context: A281094 A054782 A261082 * A211397 A173542 A323383

Adjacent sequences:  A271484 A271485 A271486 * A271488 A271489 A271490

KEYWORD

nonn,more

AUTHOR

N. J. A. Sloane, Apr 13 2016

EXTENSIONS

More terms from Jean-François Alcover, Nov 17 2017

a(25)-a(40) from Lars Blomberg, Jan 08 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 14:47 EST 2019. Contains 329806 sequences. (Running on oeis4.)