login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249026
Array read by antidiagonals upwards: T(d,n) = number of d-dimensional permutations of n letters (d >= 0, n >= 1).
7
1, 1, 2, 1, 2, 3, 1, 2, 6, 4, 1, 2, 12, 24, 5, 1, 2, 24, 576, 120, 6, 1, 2, 48, 55296, 161280, 720, 7, 1, 2, 96, 36972288, 2781803520, 812851200, 5040, 8, 1, 2, 192, 6268637952000, 52260618977280, 994393803303936000, 61479419904000, 40320, 9
OFFSET
0,3
COMMENTS
By definition, this is the number of nXnXnX...Xn = n^(d+1) arrays of 0's and 1's with exactly one 1 in each row, column, ..., line, ... .
An ordinary permutation is the case d = 1 (ordinary matrices with a single 1 in each row and column).
Rows d=2,3,... correspond to Latin squares, cubes, etc.
LINKS
Linial, Nathan, and Zur Luria, An upper bound on the number of high-dimensional permutations, arXiv preprint arXiv:1106.0649 [math.CO], (2011).
Linial, Nathan, and Zur Luria, An upper bound on the number of high-dimensional permutations, Combinatorica, 34 (2014), 471-486.
EXAMPLE
The array begins:
d\n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
--------------------------------------------------------------
0: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
1: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, ...
2: 1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800,...
3: 1, 2, 24, 55296, 2781803520, 994393803303936000, ...
4: 1, 2, 48, 36972288, 52260618977280, ...
5: 1, 2, 96, 6268637952000, 2010196727432478720, ...
6: 1, 2, 192, ...
7: 1, 2, 384, ...
8: 1, 2, 768, ...
...
CROSSREFS
Column 4 = A249028.
See A249027 for another version.
Sequence in context: A126247 A213999 A374411 * A263597 A263905 A263693
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 23 2014
STATUS
approved