OFFSET
1,3
COMMENTS
By definition, this is the number of nXnXnX...Xn = n^(d+1) arrays of 0's and 1's with exactly one 1 in each row, column, ..., line, ... .
An ordinary permutation is the case d = 1 (ordinary matrices with a single 1 in each row and column).
Rows d=2,3,... correspond to Latin squares, cubes, etc.
LINKS
Linial, Nathan, and Zur Luria, An upper bound on the number of high-dimensional permutations, arXiv preprint arXiv:1106.0649 [math.CO], (2011).
Linial, Nathan, and Zur Luria, An upper bound on the number of high-dimensional permutations, Combinatorica, 34 (2014), 471-486.
EXAMPLE
The array begins:
d\n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
-----------------------------------------------------------
1: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, ...
2: 1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800,...
3: 1, 2, 24, 55296, 2781803520, 994393803303936000, ...
4: 1, 2, 48, 36972288, 52260618977280, ...
5: 1, 2, 96, 6268637952000, 2010196727432478720, ...
6: 1, 2, 192, ...
7: 1, 2, 384, ...
8: 1, 2, 768, ...
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 23 2014
STATUS
approved