login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249027
Array read by antidiagonals upwards: T(d,n) = number of d-dimensional permutations of n letters (d >= 1, n >= 1).
1
1, 1, 2, 1, 2, 6, 1, 2, 12, 24, 1, 2, 24, 576, 120, 1, 2, 48, 55296, 161280, 720, 1, 2, 96, 36972288, 2781803520, 812851200, 5040, 1, 2, 192, 6268637952000, 52260618977280, 994393803303936000, 61479419904000, 40320
OFFSET
1,3
COMMENTS
By definition, this is the number of nXnXnX...Xn = n^(d+1) arrays of 0's and 1's with exactly one 1 in each row, column, ..., line, ... .
An ordinary permutation is the case d = 1 (ordinary matrices with a single 1 in each row and column).
Rows d=2,3,... correspond to Latin squares, cubes, etc.
LINKS
Linial, Nathan, and Zur Luria, An upper bound on the number of high-dimensional permutations, arXiv preprint arXiv:1106.0649 [math.CO], (2011).
Linial, Nathan, and Zur Luria, An upper bound on the number of high-dimensional permutations, Combinatorica, 34 (2014), 471-486.
EXAMPLE
The array begins:
d\n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
-----------------------------------------------------------
1: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, ...
2: 1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800,...
3: 1, 2, 24, 55296, 2781803520, 994393803303936000, ...
4: 1, 2, 48, 36972288, 52260618977280, ...
5: 1, 2, 96, 6268637952000, 2010196727432478720, ...
6: 1, 2, 192, ...
7: 1, 2, 384, ...
8: 1, 2, 768, ...
...
CROSSREFS
Column 4 = A249028.
See A249026 for another version.
Sequence in context: A008305 A208763 A355721 * A307584 A266183 A232483
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 23 2014
STATUS
approved