login
A249024
Numerators from expansion of e.g.f. (x^3/3!)/(e^x-1-x-(x^2/2!)).
1
1, -1, 1, 1, 1, -1, -13, 7, 7453, 6669, -114753, -123387, -7307779, 4681807, 37377631, 3949479, -309016992029, -139291594927, 1061523546157, 562200661481, 12828113969679941, -446763044161503, -17777677128737999, -3490123799181493, 7248496389957890833, 196409682891987107
OFFSET
0,7
FORMULA
E.g.f.: (x^3/3!)/(e^x-1-x-(x^2/2!)).
EXAMPLE
E.g.f. coefficients are 1, -1/4, 1/40, 1/160, 1/5600, -1/896, -13/19200, 7/76800, ...
MATHEMATICA
Numerator[(#! SeriesCoefficient[(x^3/6)/(E^x - 1 - x - x^2/2), {x, 0, #}] & /@ Range[0, 25])]
PROG
(Sage)
def A249024_list(len):
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
f *= n
for k in range(n, 0, -1):
C[k] = C[k-1] / (k+3)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).numerator())
return R
print(A249024_list(26)) # Peter Luschny, Feb 20 2016
CROSSREFS
Cf. A248964 (denominators).
Sequence in context: A177427 A110056 A159562 * A076116 A010216 A302456
KEYWORD
sign,frac
AUTHOR
Christopher Ernst, Oct 19 2014
STATUS
approved