login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A248964
Denominators from expansion of e.g.f. (x^3/3!)/(e^x-1-x-(x^2/2!)).
1
1, 4, 40, 160, 5600, 896, 19200, 76800, 14784000, 19712000, 512512000, 186368000, 19568640000, 6021120000, 20889600000, 7798784000, 71310131200000, 16778854400000, 503365632000000, 15138816000000, 221798793216000000, 6035341312000000
OFFSET
0,2
LINKS
Daniel Berhanu, Hunduma Legesse, Arithmetical properties of hypergeometric bernoulli numbers, Indagationes Mathematicae, 2016.
FORMULA
E.g.f: (x^3/3!)/(e^x - 1 - x - (x^2/2!)).
EXAMPLE
E.g.f. coefficients are 1, -1/4, 1/40, 1/160, 1/5600, -1/896, -13/19200, 7/76800, ...
MATHEMATICA
Denominator[(#! SeriesCoefficient[(x^3/6)/( E^x - 1 - x - x^2/2), {x, 0, #}] & /@ Range[0, 25])]
PROG
(PARI) x = y + O(y^30); v = Vec(serlaplace((x^3/3!)/(exp(x)-1-x-(x^2/2!)))); for (i=1, #v, print1(denominator(v[i]), ", ")); \\ Michel Marcus, Oct 18 2014
(Sage)
def A248964_list(len):
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
f *= n
for k in range(n, 0, -1):
C[k] = C[k-1] / (k+3)
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*f).denominator())
return R
print(A248964_list(22)) # Peter Luschny, Feb 20 2016
CROSSREFS
Cf. A249024 (numerators).
Sequence in context: A355841 A187378 A199833 * A224086 A271013 A163322
KEYWORD
nonn,frac
AUTHOR
Christopher Ernst, Oct 18 2014
STATUS
approved