login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248961
Sums of wrecker ball sequences starting with n.
5
0, 1, -2, 5, -292, -241, 14, -437861, -28, -1, 30, 313, -4472, -4223, -2, 55, 3252, -214246256269, -70, -27, 5260887648, 91, -538, -193, -132, -864538549823, -22, 27, 140, 40053, 53088613819206, 86166834699, 86167898716, 86168962733, 86170026754, 49, 204
OFFSET
0,3
COMMENTS
a(n) = A248973(n, A228474(n)) = sum of row n in triangle A248939;
a(A000217(n)) = A000330(n).
LINKS
Gordon Hamilton, Wrecker Ball Sequences, Video, 2013
EXAMPLE
a(1) = 1+0 = 1;
a(2) = 2+1-1-4+0 = -2;
a(3) = 3+2+0 = 5;
a(4) = 4+3+1-2+2-3-9-16-8-17-7-18-6+7+21+6-10-27-45-26-46-25-47-24+0 = -292;
a(5) = 5+4+2-1+3-2-8-15-7-16-6-17-5+8+22+7-9-26-44-25-45-24-46-... = -241;
a(6) = 6+5+3+0 = 14;
a(7) = 7+6+4+1-3+2-4+3-5-14-24-13-1+12-2+13+29+46+28+9-11+10-... = -437861;
a(8) = 8+7+5+2-2+3-3+4-4-13-23-12+0 = -28;
a(9) = 9+8+6+3-1+4-2+5-3-12-22-11+1+14+0 = -1.
PROG
(Haskell) import Data.IntSet (singleton, member, insert)
a248961 n = addup 1 n 0 $ singleton n where
addup _ 0 sum _ = sum
addup k x sum s = addup (k + 1) y (sum + x) (insert y s) where
y = x + (if (x - j) `member` s then j else -j)
j = k * signum x
(C++) #include<set>
long A248961(long n) { long c=0, d, S=n; for(std::set<long> A; n; A.insert(n), S += n += A.count(n - (d = n>0 ? c : -c)) ? d : -d) ++c; return S; } // M. F. Hasler, Mar 19 2019
(PARI) A248961(n, A=[n], c, S=n)={while( n+=sign(n)*if(setsearch(A, n-sign(n)*c+=1), c, -c), A=setunion(A, [n]); S+=n); S} \\ M. F. Hasler, Mar 19 2019
(Python) def A248961(n):
A = {n}; c = 0; S = 0
while n != 0:
++c; s = c if n>0 else -c; n += s if n-s in A else -s; A.add(n); S += n
return S # M. F. Hasler, Mar 19 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Reinhard Zumkeller, Oct 18 2014
STATUS
approved