OFFSET
0,1
COMMENTS
The Tangent-Euler constant is introduced here as the limit as n increases without bound of sum{tan(1/k), k = 1..n} - integral{tan(1/x) over [1,n]}; this is analogous to the Euler constant, defined as the limit of sum{1/k, k = 1..n} - integral{1/x over [1,n]}.
EXAMPLE
Tangent Euler constant = 0.9943228747334639280815980...
MATHEMATICA
CI = N[Integrate[Normal[Series[Tan[x], {x, 0, 500}]] /. x -> 1/x, x] /. x -> 1, 100]; t = (Total[Table[((-1)^(n - 1) 2^(2 n) (2^(2 n) - 1) BernoulliB[2 n])/(2 n)! HarmonicNumber[k, 2 n - 1], {n, 80}]] /. k -> #) - N[Integrate[Normal[Series[Tan[x], {x, 0, 10}]] /. x -> 1/x, x] /. x -> #, 100] - CI) &[N[10^30, 30]]
RealDigits[t][[1]]
(* Peter J. C. Moses, Oct 20 2014 *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Oct 22 2014
STATUS
approved