This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177427 Numerators of the Inverse Akiyama-Tanigawa transform of the aerated even-indexed Bernoulli numbers 1, 0, 1/6, 0, -1/30, 0, 1/42,... 6
 1, 1, 13, 7, 149, 157, 383, 199, 7409, 7633, 86231, 88331, 1173713, 1197473, 1219781, 620401, 42862943, 43503583, 279379879, 283055551, 57313183, 19328341, 449489867, 1362695813, 34409471059, 34738962067, 315510823603, 45467560829, 9307359944587, 9382319148907, 293103346860157, 147643434162641, 594812856101039, 54448301591149 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS These are the numerators of the first row of a Table T(n,k) which contains the even-indexed Bernoulli numbers in the first column: T(2n,0) = A000367(n)/A002445(n), T(2n+1,0)=0, and which generates rows with the Akiyama-Tanigawa transform. (Because the first column is given, the algorithm is an inverse Akiyama-Tanigawa transform.) These are the absolute values of the numerators of the Taylor expansion of sinh(log(x+1))*log(x+1)at x=0. - Gary Detlefs, Aug 31 2011 LINKS L. A. Medina, V. H. Moll, E. S. Rowland, Iterated primitives of logarithmic powers, arXiv:0911.1325, arXiv:0911.1325 [math.NT], 2009-2010. D. Merlini, R. Sprugnoli, M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05. FORMULA T(0,k) = H(k)/2+1/(k+1) with H(k) harmonic number of order k. - Roland Groux, Jan 07 2011 T(0,k)= -(1/2)*(k+1)*int(x^n*log(x*(1-x)),x=0..1). - Roland Groux, Jan 07 2011 G.f.: sum_{k>=0} T(0,k) x^k = (x-2)*(log(1-x))/(2*x*(1-x)). - Roland Groux, Jan 07 2011 T(1,n) = -A191567(n)/A061038(n+2) = -A060819(n)/A145979(n). - Paul Curtz, Jul 19 2011 (T(1,n))^2 = A181318(n)/A061038(n+2). - Paul Curtz, Jul 19 2011, index corrected by R. J. Mathar, Sep 09 2011 EXAMPLE The table T(n,k) of fractions generated by the Akiyama-Tanigawa transform, with the column T(n,0) equal to bernoulli(n) for even n and equal to 0 for odd n, starts in row n=0 as: 1, 1, 13/12, 7/6, 149/120, 157/120, 383/280, 199/140,... 0, -1/6, -1/4, -3/10, -1/3, -5/14, -3/8, -7/18, -2/5, -9/22,... 1/6, 1/6, 3/20, 2/15, 5/42, 3/28, 7/72, 4/45, 9/110, 5/66,.. 0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495, 3/55, 15/286, ... -1/30, -1/30, -3/140, -1/105, 0, 1/140, 49/3960, 8/495,.. 0, -1/42, -1/28, -4/105, -1/28, -29/924, -7/264, -28/1287, -87/5005, ... 1/42, 1/42, 1/140, -1/105, -5/231, -9/308, -343/10296, -1576/45045, ... MATHEMATICA t[n_, 0] := BernoulliB[n]; t[1, 0]=0; t[n_, k_] := t[n, k] = (t[n, k-1] + (k-1)*t[n, k-1] - t[n+1, k-1])/k; Table[t[0, k], {k, 0, 33}] // Numerator (* Jean-François Alcover, Aug 09 2012 *) CROSSREFS Cf. A177690 (denominators). Sequence in context: A257928 A206611 A152142 * A110056 A159562 A249024 Adjacent sequences:  A177424 A177425 A177426 * A177428 A177429 A177430 KEYWORD nonn,frac AUTHOR Paul Curtz, May 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.