login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152142
a(n) = Product_{k=1..floor((n-1)/2)} (1 + 4*sin(k*Pi/n)^2 + 16*sin(k*Pi/n)^4).
0
1, 1, 1, 13, 7, 76, 39, 421, 217, 2353, 1216, 13201, 6825, 74101, 38311, 415948, 215047, 2334781, 1207089, 13105441, 6775552, 73562593, 38032081, 412916701, 213479175, 2317756876, 1198287271, 13009880533, 6726147337, 73026206161
OFFSET
0,4
FORMULA
G.f.: (x^8 - x^7 - 8*x^6 - 6*x^5 + 9*x^4 + 6*x^3 - 6*x^2 + x + 1) / ((x^4 - x^3 - 3*x^2 - x + 1)*(x^4 + x^3 - 3*x^2 + x + 1)). - Colin Barker, Jan 05 2014
MATHEMATICA
f[n_] = Product[(1 + 4*Sin[k*Pi/n]^2 + 16*Sin[k*Pi/n]^4), {k, 1, Floor[(n - 1)/2]}]; a = Table[f[n], {n, 0, 30}]; Round[a]; FullSimplify[ExpandAll[a]]
PROG
(PARI) Vec((x^8-x^7-8*x^6-6*x^5+9*x^4+6*x^3-6*x^2+x+1)/((x^4-x^3-3*x^2-x+1)*(x^4+x^3-3*x^2+x+1)) + O(x^100)) \\ Colin Barker, Jan 05 2014
CROSSREFS
Sequence in context: A345399 A298257 A298928 * A298085 A177427 A110056
KEYWORD
nonn,easy
AUTHOR
STATUS
approved