login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177430
Least monotonically increasing logarithmic derivative consisting of only squares.
2
1, 9, 16, 25, 36, 144, 169, 225, 484, 784, 1024, 1156, 1444, 1521, 2601, 3025, 4489, 5184, 5625, 6400, 7744, 9216, 12996, 15876, 17161, 19600, 24649, 25281, 29929, 34969, 46656, 47089, 50176, 55225, 56169, 62500, 66564, 69169, 72361, 78400
OFFSET
1,2
COMMENTS
Conjecture: the sequence {a(n)^(m/2), n>=1} forms a logarithmic derivative of an integer sequence only when m is a nonnegative even integer.
FORMULA
a(n) = A177431(n)^2.
EXAMPLE
L.g.f.: A(x) = x + 9/2*x^2 + 16/3*x^3 + 25/4*x^4 + 36/5*x^5 +...
exp(A(x)) = 1 + x + 5*x^2 + 10*x^3 + 24*x^4 + 51*x^5 + 122*x^6 + 244*x^7 +...+ A177432(n)*x^n +...
The square-root of each term gives the sequence A177431, which begins:
[1, 3, 4, 5, 6, ...];
A177431 does not form a logarithmic derivative of an integer sequence.
PROG
(PARI) {a(n)=local(V, A=[1], M); V=Vec(exp(x+sum(k=2, n-1, a(k)*x^k/k)+t*x^n/n+x*O(x^n))); if(n==1, M=1, M=a(n-1); for(m=sqrtint(a(n-1))+1, 9*a(n-1), if(denominator(subst(V[ #V], t, m^2))==1, M=m^2; break)); M)}
CROSSREFS
Sequence in context: A085585 A026062 A108945 * A256705 A092941 A075393
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 06 2010
EXTENSIONS
Edited to prevent horizontal scrolling -- Charles R Greathouse IV, Sep 08 2010
STATUS
approved