Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Feb 27 2022 15:48:55
%S 1,1,13,7,149,157,383,199,7409,7633,86231,88331,1173713,1197473,
%T 1219781,620401,42862943,43503583,279379879,283055551,57313183,
%U 19328341,449489867,1362695813,34409471059,34738962067,315510823603,45467560829,9307359944587,9382319148907,293103346860157,147643434162641,594812856101039,54448301591149
%N Numerators of the Inverse Akiyama-Tanigawa transform of the aerated even-indexed Bernoulli numbers 1, 0, 1/6, 0, -1/30, 0, 1/42, ...
%C These are the numerators of the first row of a Table T(n,k) which contains the even-indexed Bernoulli numbers in the first column: T(2n,0) = A000367(n)/A002445(n), T(2n+1,0)=0, and which generates rows with the Akiyama-Tanigawa transform. (Because the first column is given, the algorithm is an inverse Akiyama-Tanigawa transform.)
%C These are the absolute values of the numerators of the Taylor expansion of sinh(log(x+1))*log(x+1)at x=0. - _Gary Detlefs_, Aug 31 2011
%H L. A. Medina, V. H. Moll, E. S. Rowland, <a href="http://arxiv.org/abs/0911.1325">Iterated primitives of logarithmic powers</a>, arXiv:0911.1325, arXiv:0911.1325 [math.NT], 2009-2010.
%H D. Merlini, R. Sprugnoli, M. C. Verri, <a href="http://www.emis.de/journals/INTEGERS/papers/f5/f5.Abstract.html">The Akiyama-Tanigawa Transformation</a>, Integers, 5 (1) (2005) #A05.
%F From _Groux Roland_, Jan 07 2011: (Start)
%F T(0,k) = H(k)/2 + 1/(k+1) with H(k) harmonic number of order k.
%F T(0,k)= -(1/2)*(k+1)*Integral_{x=0..1} x^n*log(x*(1-x)) dx.
%F G.f.: Sum_{k>=0} T(0,k) x^k = (x-2)*(log(1-x))/(2*x*(1-x)). (End)
%F T(1,n) = -A191567(n)/A061038(n+2) = -A060819(n)/A145979(n). - _Paul Curtz_, Jul 19 2011
%F (T(1,n))^2 = A181318(n)/A061038(n+2). - _Paul Curtz_, Jul 19 2011, index corrected by _R. J. Mathar_, Sep 09 2011
%e The table T(n,k) of fractions generated by the Akiyama-Tanigawa transform, with the column T(n,0) equal to Bernoulli(n) for even n and equal to 0 for odd n, starts in row n=0 as:
%e 1, 1, 13/12, 7/6, 149/120, 157/120, 383/280, 199/140, ...
%e 0, -1/6, -1/4, -3/10, -1/3, -5/14, -3/8, -7/18, -2/5, -9/22, ...
%e 1/6, 1/6, 3/20, 2/15, 5/42, 3/28, 7/72, 4/45, 9/110, 5/66, ...
%e 0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495, 3/55, 15/286, ...
%e -1/30, -1/30, -3/140, -1/105, 0, 1/140, 49/3960, 8/495, ...
%e 0, -1/42, -1/28, -4/105, -1/28, -29/924, -7/264, -28/1287, -87/5005, ...
%e 1/42, 1/42, 1/140, -1/105, -5/231, -9/308, -343/10296, -1576/45045, ...
%t t[n_, 0] := BernoulliB[n]; t[1, 0]=0; t[n_, k_] := t[n, k] = (t[n, k-1] + (k-1)*t[n, k-1] - t[n+1, k-1])/k; Table[t[0, k], {k, 0, 33}] // Numerator (* _Jean-François Alcover_, Aug 09 2012 *)
%Y Cf. A177690 (denominators).
%K nonn,frac
%O 0,3
%A _Paul Curtz_, May 07 2010