login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076116
Start of the smallest string of n consecutive positive numbers with a cube sum, or 0 if no such number exists.
2
1, 13, 8, 0, 23, 2, 46, 0, 20, 8, 116, 0, 163, 18, 218, 6, 281, 32, 352, 0, 431, 50, 518, 0, 28, 72, 14, 0, 827, 98, 946, 0, 1073, 128, 1208, 0, 1351, 162, 1502, 0, 1661, 200, 1828, 0, 53, 242, 2186, 98, 32, 43, 2576, 0, 2783, 36, 2998, 0, 3221, 392, 3452, 0, 3691, 450
OFFSET
1,2
LINKS
FORMULA
From Robert Israel, Nov 15 2023: (Start)
If n is odd, then a(n) is the least positive integer of the form (k*A019555(n))^3/n - (n-1)/2 where k is an integer.
If n is even, then let v = A007814(n). If v == 1 (mod 3) then a(n) is the least positive integer of the form (k*A019555(n/2))^3/n - (n-1)/2 where k an odd integer; otherwise, a(n) = 0. (End)
MAPLE
f:= proc(n) local y, F, t, k, v;
if n::odd then
F:= ifactors(n)[2];
y:= mul(t[1]^ceil(t[2]/3), t=F);
k:= 1+floor((n*(n-1)/2)^(1/3)/y);
(k*y)^3/n - (n-1)/2;
else
v:= padic:-ordp(n, 2);
if v mod 3 <> 1 then return 0 fi;
F:= ifactors(n/2^v)[2];
y:= mul(t[1]^ceil(t[2]/3), t=F)*2^((v-1)/3);
k:= 1 + floor((n*(n-1)/2)^(1/3)/y);
if k::even then k:= k+1 fi;
(k*y)^3/n - (n-1)/2;
fi
end proc:
map(f, [$1..100]); # Robert Israel, Nov 15 2023
MATHEMATICA
f[n_] := Module[{y, F, t, k, v},
If[OddQ[n],
F = FactorInteger[n];
y = Product[t[[1]]^Ceiling[t[[2]]/3], {t, F}];
k = 1 + Floor[(n*(n-1)/2)^(1/3)/y];
(k*y)^3/n - (n-1)/2
,
v = IntegerExponent[n, 2];
If[Mod[v, 3] != 1, Return[0]];
F = FactorInteger[n/2^v];
y = Product[t[[1]]^Ceiling[t[[2]]/3], {t, F}]*2^((v-1)/3);
k = 1 + Floor[(n*(n-1)/2)^(1/3)/y];
If[EvenQ[k], k = k+1];
(k*y)^3/n - (n-1)/2]];
Map[f, Range[100]] (* Jean-François Alcover, Jul 09 2024, after Robert Israel *)
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Amarnath Murthy, Oct 09 2002
EXTENSIONS
More terms from David Wasserman, Apr 02 2005
STATUS
approved