login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Start of the smallest string of n consecutive positive numbers with a cube sum, or 0 if no such number exists.
3

%I #20 Jul 09 2024 08:41:57

%S 1,13,8,0,23,2,46,0,20,8,116,0,163,18,218,6,281,32,352,0,431,50,518,0,

%T 28,72,14,0,827,98,946,0,1073,128,1208,0,1351,162,1502,0,1661,200,

%U 1828,0,53,242,2186,98,32,43,2576,0,2783,36,2998,0,3221,392,3452,0,3691,450

%N Start of the smallest string of n consecutive positive numbers with a cube sum, or 0 if no such number exists.

%H Robert Israel, <a href="/A076116/b076116.txt">Table of n, a(n) for n = 1..10000</a>

%F From _Robert Israel_, Nov 15 2023: (Start)

%F If n is odd, then a(n) is the least positive integer of the form (k*A019555(n))^3/n - (n-1)/2 where k is an integer.

%F If n is even, then let v = A007814(n). If v == 1 (mod 3) then a(n) is the least positive integer of the form (k*A019555(n/2))^3/n - (n-1)/2 where k an odd integer; otherwise, a(n) = 0. (End)

%p f:= proc(n) local y,F,t,k,v;

%p if n::odd then

%p F:= ifactors(n)[2];

%p y:= mul(t[1]^ceil(t[2]/3),t=F);

%p k:= 1+floor((n*(n-1)/2)^(1/3)/y);

%p (k*y)^3/n - (n-1)/2;

%p else

%p v:= padic:-ordp(n,2);

%p if v mod 3 <> 1 then return 0 fi;

%p F:= ifactors(n/2^v)[2];

%p y:= mul(t[1]^ceil(t[2]/3),t=F)*2^((v-1)/3);

%p k:= 1 + floor((n*(n-1)/2)^(1/3)/y);

%p if k::even then k:= k+1 fi;

%p (k*y)^3/n - (n-1)/2;

%p fi

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Nov 15 2023

%t f[n_] := Module[{y, F, t, k, v},

%t If[OddQ[n],

%t F = FactorInteger[n];

%t y = Product[t[[1]]^Ceiling[t[[2]]/3], {t, F}];

%t k = 1 + Floor[(n*(n-1)/2)^(1/3)/y];

%t (k*y)^3/n - (n-1)/2

%t ,

%t v = IntegerExponent[n, 2];

%t If[Mod[v, 3] != 1, Return[0]];

%t F = FactorInteger[n/2^v];

%t y = Product[t[[1]]^Ceiling[t[[2]]/3], {t, F}]*2^((v-1)/3);

%t k = 1 + Floor[(n*(n-1)/2)^(1/3)/y];

%t If[EvenQ[k], k = k+1];

%t (k*y)^3/n - (n-1)/2]];

%t Map[f, Range[100]] (* _Jean-François Alcover_, Jul 09 2024, after _Robert Israel_ *)

%Y Cf. A007814, A019555, A076117, A076114.

%K nonn,look

%O 1,2

%A _Amarnath Murthy_, Oct 09 2002

%E More terms from _David Wasserman_, Apr 02 2005