The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098679 Total number of Latin cubes of order n. 8
 1, 2, 24, 55296, 2781803520, 994393803303936000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS There are at least two ways to define Latin cubes - see the Preece et al. paper. - Rosemary Bailey, Nov 03 2004 REFERENCES T. Ito, Method for producing Latin squares, Publication number JP2000-28510A, Japan Patent Office. T. Ito, Method for producing Latin squares, JP3394467B, Patent abstracts of Japan, Japan Patent Office. Jia, Xiong Wei and Qin, Zhong Ping, The number of Latin cubes and their isotopy classes, J. Huazhong Univ. Sci. Tech. 27 (1999), no. 11, 104-106. MathSciNet #MR1751724. LINKS B. D. McKay and I. M. Wanless, A census of small latin hypercubes, SIAM J. Discrete Math. 22, (2008) 719-736. Gary L. Mullen, and Robert E. Weber, Latin cubes of order <= 5, Discrete Math. 32 (1980), no. 3, 291-297. (Gives a(1)-a(5).) D. A. Preece, S. C. Pearce and J. R. Kerr, Orthogonal designs for three-dimensional experiments, Biometrika 60 (1973), 349-358. FORMULA a(n) = n!*(n-1)!*(n-1)!*A098843(n). CROSSREFS Cf. A098843, A098846, A099321; A002860 (Latin squares). A row of the array in A249026. Sequence in context: A338152 A108349 A000722 * A123851 A258824 A120122 Adjacent sequences:  A098676 A098677 A098678 * A098680 A098681 A098682 KEYWORD hard,nonn,nice,more AUTHOR N. J. A. Sloane, based on correspondence from Toru Ito (t_ito(AT)mue.biglobe.ne.jp), Nov 06 2004 EXTENSIONS a(6) computed independently by Brendan McKay and Ian Wanless, Dec 17 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 18:18 EDT 2022. Contains 354885 sequences. (Running on oeis4.)