login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115331
E.g.f.: exp(x+5/2*x^2).
4
1, 1, 6, 16, 106, 426, 3076, 15856, 123516, 757756, 6315976, 44203776, 391582456, 3043809016, 28496668656, 241563299776, 2378813448976, 21703877431056, 223903020594016, 2177251989389056, 23448038945820576, 241173237884726176
OFFSET
0,3
COMMENTS
Term-by-term square of sequence with e.g.f.: exp(x+m/2*x^2) is given by e.g.f.: exp(x/(1-m*x))/sqrt(1-m^2*x^2) for all m.
a(n) is also the number of square roots of any permutation in S_{5n} whose disjoint cycle decomposition consists of n cycles of length 5. - Luis Manuel Rivera Martínez, Feb 26 2015
LINKS
Jesús Leaños, Rutilo Moreno, and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, arXiv:1005.1531 [math.CO], 2010-2011.
Jesús Leaños, Rutilo Moreno, and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations , Australas. J. Combin. 52 (2012), 41-54 (Theorems 1 and 2).
FORMULA
Term-by-term square equals A115332 which has e.g.f.: exp(x/(1-5*x))/sqrt(1-25*x^2).
a(n) ~ exp(sqrt(n/5)-n/2-1/20)*5^(n/2)*n^(n/2)/sqrt(2). - Vaclav Kotesovec, Oct 19 2012
a(n) = n!*Sum_{k=0..floor(n/2)}5^k/(2^k*k!*(n-2*k)!). - Luis Manuel Rivera Martínez, Feb 26 2015
O.g.f.: 1/(1-x - 5*x^2/(1-x - 10*x^2/(1-x - 15*x^2/(1-x - 20*x^2/(1-x - 25*x^2/(1-x -...)))))), a continued fraction (after Paul Barry in A115327). - Paul D. Hanna, Mar 08 2015
MATHEMATICA
Range[0, 20]! CoefficientList[Series[Exp[(x + 5 / 2 x^2)], {x, 0, 20}], x] (* Vincenzo Librandi, May 22 2013 *)
PROG
(PARI) a(n)=local(m=5); n!*polcoeff(exp(x+m/2*x^2+x*O(x^n)), n)
CROSSREFS
Column k=5 of A359762.
Cf. A115332.
Sequence in context: A009354 A034191 A368875 * A239027 A218976 A173737
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 20 2006
STATUS
approved