login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034191
Number of binary codes of length 6 with n words.
11
1, 1, 6, 16, 103, 497, 3253, 19735, 120843, 681474, 3561696, 16938566, 73500514, 290751447, 1052201890, 3492397119, 10666911842, 30064448972, 78409442414, 189678764492, 426539774378, 893346071377, 1745593733454
OFFSET
0,3
COMMENTS
Also number of 2-colorings of the vertices of the 6-cube having n nodes of one color.
The b-file shows the full sequence.
REFERENCES
W. Y. C. Chen, Induced cycle structures of the hyperoctahedral group. SIAM J. Disc. Math. 6 (1993), 353-362.
H. Fripertinger, Enumeration, construction and random generation of block codes, Designs, Codes, Crypt., 14 (1998), 213-219.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1979.
LINKS
MATHEMATICA
(* From Robert A. Russell, May 08 2007: (Start) *)
P[ n_Integer ]:=P[ n ]=P[ n, n ]; P[ n_Integer, _ ]:={}/; (n<0); (* partitions *)
P[ 0, _ ]:={{}}; P[ n_Integer, 1 ]:={Table[ 1, {n} ]}; P[ _, 0 ]:={}; (*S.S. Skiena*)
P[ n_Integer, m_Integer ]:=Join[ Map[ (Prepend[ #, m ])&, P[ n-m, m ] ], P[ n, m-1 ] ];
AC[ d_Integer ]:=Module[ {C, M, p}, (* from W.Y.C. Chen algorithm *)
M[ p_List ]:=Plus@@p!/(Times@@p Times@@(Length/@Split[ p ]!));
C[ p_List, q_List ]:=Module[ {r, m, k, x}, r=If[ 0==Length[ q ], 1, 2 2^
IntegerExponent[ LCM@@q, 2 ] ]; m=LCM@@Join[ p/GCD[ r, p ], q/GCD[ r, q ] ];
CoefficientList[ Expand[ Product[ (1+x^(k r))^((Plus@@Map[ MoebiusMu[ k/# ]
2^Plus@@GCD[# r, Join[ p, q ] ]&, Divisors[ k ] ])/(k r)), {k, 1, m} ] ], x ] ];
Sum[ Binomial[ d, p ]Plus@@Plus@@Outer[ M[ #1 ]M[ #2 ]C[ #1, #2 ]2^(d-Length[ #1 ]-Length[ #2 ])&, P[ p ], P[ d-p ], 1 ], {p, 0, d} ]/(d!2^d) ]; AC[ 6 ]
(* End *)
CROSSREFS
KEYWORD
nonn,fini,full
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 11 2007
STATUS
approved