The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034190 Number of binary codes of length 5 with n words. 12
 1, 1, 5, 10, 47, 131, 472, 1326, 3779, 9013, 19963, 38073, 65664, 98804, 133576, 158658, 169112, 158658, 133576, 98804, 65664, 38073, 19963, 9013, 3779, 1326, 472, 131, 47, 10, 5, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also number of 2-colorings of the vertices of the 5-cube having n nodes of one color. REFERENCES W. Y. C. Chen, Induced cycle structures of the hyperoctahedral group. SIAM J. Disc. Math. 6 (1993), 353-362. H. Fripertinger, Enumeration, construction and random generation of block codes, Designs, Codes, Crypt., 14 (1998), 213-219. R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1979. LINKS Table of n, a(n) for n=0..32. H. Fripertinger, Isometry Classes of Codes MATHEMATICA (* From Robert A. Russell, May 08 2007: (Start) *) P[ n_Integer ]:=P[ n ]=P[ n, n ]; P[ n_Integer, _ ]:={}/; (n<0); (* partitions *) P[ 0, _ ]:={{}}; P[ n_Integer, 1 ]:={Table[ 1, {n} ]}; P[ _, 0 ]:={}; (*S.S. Skiena*) P[ n_Integer, m_Integer ]:=Join[ Map[ (Prepend[ #, m ])&, P[ n-m, m ] ], P[ n, m-1 ] ]; AC[ d_Integer ]:=Module[ {C, M, p}, (* from W.Y.C. Chen algorithm *) M[ p_List ]:=Plus@@p!/(Times@@p Times@@(Length/@Split[ p ]!)); C[ p_List, q_List ]:=Module[ {r, m, k, x}, r=If[ 0==Length[ q ], 1, 2 2^ IntegerExponent[ LCM@@q, 2 ] ]; m=LCM@@Join[ p/GCD[ r, p ], q/GCD[ r, q ] ]; CoefficientList[ Expand[ Product[ (1+x^(k r))^((Plus@@Map[ MoebiusMu[ k/# ] 2^Plus@@GCD[# r, Join[ p, q ] ]&, Divisors[ k ] ])/(k r)), {k, 1, m} ] ], x ] ]; Sum[ Binomial[ d, p ]Plus@@Plus@@Outer[ M[ #1 ]M[ #2 ]C[ #1, #2 ]2^(d-Length[ #1 ]-Length[ #2 ])&, P[ p ], P[ d-p ], 1 ], {p, 0, d} ]/(d!2^d) ]; AC[ 5 ] (* End *) CROSSREFS Row n=5 of A039754. Cf. A034188, A034189, A034191, A034192, A034193, A034194, A034195, A034196, A034197. Cf. A171872 and A171876. - Robert Munafo, Jan 25 2010 Sequence in context: A270085 A035406 A103932 * A216390 A305476 A270089 Adjacent sequences: A034187 A034188 A034189 * A034191 A034192 A034193 KEYWORD nonn,fini,full AUTHOR N. J. A. Sloane EXTENSIONS Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 11 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)